几种常用的数制19页PPT
- 格式:ppt
- 大小:1.05 MB
- 文档页数:27
几个重要概念重点概念1:计算机中的数据都是以二进制形式进行存储和运算的重点概念2:在计算机中存储数据时,每类数据占据固定长度的二进制数位,而不管其实际长度。
一般长度为字节的整倍数例如:在八位微机中,整数216 存储为11011000B整数56 存储为00111000B复习1)十进制特点:每一位数有02)二进制特点:3)十六进制特点:1(即乘10101000376542复习真值与机器数例:真值与机器数+77机机例:真值与机器数-77机机2数的定点与浮点表示计算机中如何表示实数中的小数点呢?计算机中不用专门的器件表示小数点,而是用数的两种不同的表示法来表示小数点的位置。
根据小数点的位置是否固定,数的表示方法分为定点表示和浮点表示,相应的机器数称为定点数和浮点数。
任意一个二进制数N均可表示为:N=S·2J其中:最后面或最前面,即分为定点纯小数与定点纯整数两类,如图1-6所示。
01000000定点小数:定取不同的数值,则在计算机中除了要表示尾码示阶码J。
因此,一个浮点数表示为阶码和尾数两部分,尾数一般是定点纯小数,阶码是定点纯整数,其形式如图点N = 2p S点例:X= +10110.01= 2 +101×(+ 0.1011001)26点= 2无符号数带符号数数有正、负→带符号数把符号位和数值位一起编码:原码,反码,补码。
顺时针调:7+9 =4 (mod 12)逆时针调:7-3 =4 (mod 12)由于时钟上超过12点时就会自动丢失一个数与原码相同,只要将符号位的得到它的真值。
对一个二进制数按位取反,最低位加1。
(计算机 已知负数的补码求真值在计算机中,用补码表示方法:按位取反,最低位加12 105 2 52 12 26 0[ 105D ] 补8位= 0 –0110 1001B = 0 –69H -D 2000:0 如,用DEBUG 查看到存放在内存中的一组符号数:由最高位判断:0 →正数7DH的真值= 7 ×16 + 13 = 125 D凡是能在计算机内存储或参与运算的都是二进制形式的机器数,计算机只能出别“0”和“1”,对于某个二进别致的最高位究竟应看做为符号位还是数值位,理论上是无法自动识别但是,由于引入了补码概念,使得计算机在进行无符号数和有符号数的运算时能够实现操作的一致性,且结果合理。
1.常用的几种数制(1)十进制:十进制的数码用0、1、2、3、4、5、6、7、8、9来表示(2)二进制:二进制的数码用0和1来表示(3)八进制:八进制的数制用0、1、2、3、4、5、6、7来表示(4)十六进制:十六进制的数码用0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F来表示2、数制间的转换(1)二进制数转换成十进制数例1:将二进制(1111.101)2转换成十进制数。
即(1111.101)2=(15.625)10(2)十进制数换成二进制数整数部分:采用“除二取余法”,即将十进制整数反复除以2,每除一次,都取其余数,直到被除数等于零为止。
每次得到的余数的倒排列(先获得的余数为二进制整数的低位,最后获得的余数为二进制整数的高位),就是对应的二进制束整数的各位数。
小数部分:采用“乘2取整法”,即将十进制小数不断乘以2,每乘一次,都把乘积中的整数部分取出,然后用余下的小数继续乘2,一直乘到小数部分为零或满足精度为止。
每次得到的整数的顺排列就是对应的二进制小数的各位数。
例2:将十进制(123.45)10转换成二进制数(将十进制转换成八进制、十六进制类似(辗转相除法))即(123.45)=(1111011.0111)2(3)二进制数与八进制数之间的转换1》八进制数转换成二进制数例3:将八进制数(623.43)8转换成二进制数即(623.43)8=(110010011.100011)22》二进制数转换成八进制数将二进制的整数部分从右向左每三位一组,每一组为一位八进制整数。
最后一组不足三位时应在前面用0补足三位。
将二进制数的小数部分从左向右每三位一组,每一组为八进制小数。
最后一组不足三位数时,应在后面用0补足三位。
例4:将二进制数(10111001110.10101)2转换成八进制数。
即(10111001110.10101)2=(2716.52)8(4)二进制数于十六进制数之间转换1》将十六进制数换成二进制数例5:将十六进制数(B9D)16转换成二进制数即(B9D)16=(101110011101)22》二进制数转换成十六进制数。