第十一章 卡方检验
- 格式:pdf
- 大小:425.54 KB
- 文档页数:10
χ2检验一、概述χ2检验(chi-square test )既可用于推断某个变量是否服从某种特定分布的拟合优度检验(goodness of fit test ),也可用于推断两个离散型变量是否存在依从关系的独立性检验(test of independence )或推断几次重复试验的结果是否相同的同质性检验(test of homogeneity )。
图11-1 Nonparametric Tests 菜单项 图11-2 四种不同自由度的2χ分布 图11-3 拟合度2χ检验数据文件⏹ 拟合优度χ2检验的统计量为:()()1k df ~f f f 2t2t 02-=χ-=χ∑(11-1)其中:f o 表示实际频数,f t 表示理论频数,k 表示离散型变量的取值个数。
当df=1时,只要有任何一组的理论频数f t 小于5,要运用亚茨(Yates )连续型校正法进行校正:()()1k df ~f 5.0f f2t2t o2-=χ--=χ∑(11-2)⏹ 独立性或同质性χ2检验的统计量为:()()()[]1c 1r df ~f f f 2t2t o 2--=χ-=χ∑(11-3)当df=1且总样本容量N<30时,也应运用亚茨(Yates )连续型校正法对χ2值进行校正:()⎪⎩⎪⎨⎧≤->---=χN5.0f f f f if 0N 5.0f f f f if c c r r N 5.0f f f f N 211222112112221121212211222112C (11-4)式中:f 12为第1行第2列的实际频数,r 1为第1行实际频数的总和,c 1为第1列实际频第十一章非参数检验151数的总和,其余类推。
因此,χ2值大于等于0,其大小随实际频数与理论频数之差的变化而变化。
二者之差越小,χ2值也越小,说明样本分布与假设的理论分布越一致;二者之差越大,χ2值也越大,说明样本分布与假设的理论分布越不一致。
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
第十一章2χ检验2χ检验(chi-square test)是英国统计学家K. Pearson于1900年提出的,以2χ分布(chi-square distribution)和拟合优度检验(goodness-of-fit test)为理论依据,是一种应用范围很广的统计方法。
本章主要介绍率或构成比比较的2χ检验,频数分布的拟合优度2χ检验,线χ检验,以及四格表的Fisher确切概率法。
性趋势2第一节2χ检验的基本思想2χ检验是在2χ分布的基础上,利用样本信息考察样本频数分布与假设成立条件下的理论频数分布之间差异的假设检验方法。
下面以例11.1为例,说明2χ检验的基本思想。
例11.1 某研究者欲比较血塞通注射液和银杏达莫注射液治疗急性脑梗死的效果,将240例急性脑梗死患者随机分为两组,一组给予血塞通注射液治疗,另一组给予银杏达莫注射液治疗,一个疗程后观察结果,见表11.1。
问两种针剂治疗急性脑梗死的有效率是否有差别?表11.1 血塞通和银杏达莫治疗急性脑梗死的疗效血塞通114 6 120 95.00银杏达莫104 16 120 86.67合计218 22 240 90.83表11.1中,114、6、104、16这4个数据是分组变量药物(一般作为行变量)与效应指标疗效(一般作为列变量)交叉分组后,基于样本观察到的发生频数,称为实际频数(actual frequency),用符号A表示。
行合计、列合计、总合计及有效率是根据这4个基本数据计算而来。
该类型资料称为22⨯列联表资料,亦称四格表(fourfold table)资料。
血塞通组的有效率(95.00%)和银杏达莫组的有效率(86.67%)仅是样本观察的结果,由于存在抽样误差,需进行假设检验,才能得到关于两种针剂治疗急性脑梗死的总体有效率是否有差别的结论。
当两样本含量均比较大时,可以采用第十章介绍的两样本率比较的Z检验,还可采用本章介绍的2χ检验。
一、对总体建立假设例11.1的无效假设为012:H ππ=,即两种针剂治疗急性脑梗死的有效率相同。
第十一章研究结果的解释与评价辅导第一节研究结果的解释教育研究必须提倡以人为本的思想,罗杰斯(Carl Rogers)等以“学生为中心的教育”思想,是“以人为中心”人本主义心理学的体现。
这一思想标明一项重大的转变——脱离以往消极、狭隘的说法,而积极地以学生潜在特质为焦点,对教育产生了巨大的影响。
教育研究必须体现学生中心教育的原理,学生中心教育认为学生不仅仅只限于认知的学习,而应注重情感教育,聚焦全人的教育。
肯定每一学生都具有一定的潜质,是积极的,有可能达致“自我实现”(Self- Actualization)的最高境界,相信每个人天生具有一种成长与完善自己的倾向,是一种成长与发展的动力。
认为教育关系应包括真挚、尊重和同感。
教育研究的内容应体现建构主义的理论,建构主义者不仅非常关注学生是如何根据已有经验来建构新的知识,强调学习的主动性,社会性和情境性,而且在此基础上,对学习理论和教学提出了许多新的独特见解和主张。
可以说,建构主义不仅是一种全新的学习理论,更是一种全新的教学理论。
它给当前我国中小学素质教育的实施提供了许多启示。
第二节研究结果的评价对教育结果的评价应首先确定评价的标准,然后考虑教育研究结果的科学性、创造性、应用性、难易性以及是否符合伦理等。
对于科学技术成果,有三种鉴定和评价形式:检测鉴定,验收鉴定,专家评议。
教育评价的主要内容包括:第一,在教育研究中,是否遵循了教育性的原则,研究是否有害于学生的身心健康和发展。
第二,选择被研究者时,是否遵循了志愿的原则。
第三,是否尊重被研究者的人格,为其隐私保密,是否与被研究者平等地交流和合作。
第四,研究者是否有虚构事实、捏造数据、抄袭别人的成果等问题。
第五,在合作研究中,能否与其他人有效地合作。
评价的主要方法有:专家评议与投票表决法、赋值评分法和综合评等法。
第十章自测题一、填空1. 计学中不能对研究的问题直接进行检验,需要预先建立一个与研究假设相对立的假设,这一假设称为()。
卡方检验的构造原理解释说明以及概述1. 引言1.1 概述卡方检验,也称为卡方拟合度检验,是一种常用的统计方法,用于判断观察数据与期望数据之间是否存在显著差异。
它是由1880年代英国统计学家皮尔逊(Karl Pearson)提出的,并成为统计学中一项重要的假设检验工具。
1.2 文章结构本文将首先介绍卡方检验的构造原理,包括该方法的背景与发展历程、假设检验基本概念以及构造原理及假设条件。
接着,文章会详细解释说明卡方检验的相关内容,包括检验统计量及其分布、P值的计算方法与判断标准,以及常见误差类型与校正方法。
然后,我们将对卡方检验在不同领域中的应用进行概述:生物医学研究、社会科学和工程技术。
最后,在结论部分总结了卡方检验的重要性和优缺点,并展望了未来在该研究领域可能出现的发展趋势。
1.3 目的本文旨在深入探讨卡方检验这一统计学方法,全面阐述其构造原理、解释说明以及应用领域概述。
希望通过本文的阐述,读者能够更好地理解和运用卡方检验,为相关领域的研究提供参考,并促进该方法在未来的发展与应用。
2. 卡方检验的构造原理2.1 背景与发展历程在统计学中,卡方检验是一种常用的假设检验方法,用于判断观察值与期望值之间的差异是否显著。
卡方检验最早由卡尔·皮尔逊(Karl Pearson)在19世纪末提出,并受到了罗纳德·费舍尔(Ronald Fisher)等人的进一步发展和推广。
2.2 假设检验基本概念在进行卡方检验时,我们需要建立一个原假设(Null Hypothesis,H0)和一个备择假设(Alternative Hypothesis,H1)。
原假设通常表示无关性、随机性或相等性的假设,而备择假设则表明存在相关性、差异或不相等性。
2.3 构造原理及假设条件卡方检验基于观察频数与期望频数之间的差异来判断数据是否遵循某种分布或相互独立。
其构造原理可以简单描述如下:步骤1:收集数据并得到数据表格。
第十一章 相关分析练习题:1.某大型公司为了了解公司员工对于公司福利的满意程度,做了一个抽样调查,结果如下:老员工 新员工 合计 满意 90 35 125 一般 50 40 90 不满意 42 61 103 合计182136318(1)新老员工对于公司福利的满意程度是否有差异?(显著性水平为0.05) (2)如果有显著性差异,请计算Lambda 系数和tau -y 系数。
(3)请用第十章讲到的内容,计算C 系数,比较一下C 系数与Lambda 系数、tau -y 系数有多大差异。
解:(1)研究假设H 1:两者有显著差异 无假设H 0:两者没有显著差异df =(r -1)(c -1)=(3-1)⨯(2-1)=2 2()222.64o e ef f f χ-==∑显著性水平为0.05,查卡方分布表可得,当自由度为2时,0.05的显著性水平下的临界值为5.991,检验统计值22.64>5.991,落在否定域内,因此否定虚无假设,接受研究假设,即在0.05的显著性水平下,新老员工对于公司福利的满意程度有显著差异。
(2)非对称形式:Lambda 系数=90611250.135318125yyyx ymM n M λ-+-===--∑tau-y 测量法: 1()(318125)125(31890)90(318103)103318318318y yn F F E n--⨯-⨯-⨯==++∑=210.032()(18290)90(18250)50(18242)42182(13635)35(13640)40(13661)61136201.93x xF f fE F -=-⨯+-⨯+-⨯=-⨯+-⨯+-⨯+=∑121210.03201.930.04210.03E E tau y E ---==≈ (3)0.25780.26C ===≈由上面的三个系数结果可以看出,同样是计算两个变量之间的相关关系,选用不同的方法进行计算时,结果存在很大的差异。
卫生统计学第二版习题册方积乾答案与解析第一章绪论1、统计资料可以分为那几种类型?举例说明不同类型资料之间是如何转换的?答:(1)1定量资料(离散型变量、连续型变量)、2无序分类资料(二项分类资料、无序多项分类资料)、3有序分类资料(即等级资料);(2)例如人的健康状况可分为“非常好、较好、一般、差、非常差”5个等级,应归为等级资料,若将该五个等级赋值为5、4、3、2、1,就可按定量资料处理。
2、统计工作可分为那几个步骤?答:设计、收集资料、整理资料、分析资料四个步骤。
3、举例说明小概率事件的含义。
答:某人打靶100次,中靶次数少于等于5,那么该人一次打中靶的概率≤0.05,即可称该人一次打中靶的事件为小概率事件,可以视为很可能不发生。
第二章调查研究设计1、调查研究有何特点?答:(1)不能人为施加干预措施;(2)不能随机分组;(3)很难控制干扰因素;(4)一般不能下因果结论2、四种常用的抽样方法各有什么特点?答:(1)单纯随机抽样:优点是操作简单,统计量的计算较简便:缺点是当总体观察单位数量庞大时,逐一编号繁复,有时难以做到。
(2)系统抽样:优点是易于理解、操作简便,被抽到的观察单位在总体中分布均匀,抽样误差较单纯随机抽样小:缺点是在某些情况下会出现偏性或周期性变化。
(3)分层抽样:优点是抽样误差小,各层可以独立进行统计分析,适合大规模统计:缺点是事先要进行分层,操作麻烦。
(4)整群抽样:优点是易于组织和操作大规模抽样调查:缺点是抽样误差大。
3、调查设计包括那些基本内容?答:(1)明确调查目的和指标;(2)确定调查对象和观察单位;(3)选释调查方法和技术;(4)估计样本大小;(5)编制调查表;(6)评价问卷的信度和效度;(7)制定资料的收集计划;(8)指定资料的整理与分析计划;(9)制定调查的组织措施。
4、调查表中包含那几种项目?答:(1)分析项目直接整理计算的必须的内容;(2)备查项目保证分析项目填写得完整和准确的内容;(3)其他项目大型调查表的前言和表底附注。