第十一章卡方检验
- 格式:ppt
- 大小:1.46 MB
- 文档页数:15
卡方检验算法范文卡方检验是一种用于确定两个类别变量之间是否存在显著关联的统计方法。
它基于观察值与期望值之间的差异来判断关联性。
在卡方检验中,我们将观察到的频数与预期的频数进行比较,以确定它们是否有显著的差异。
卡方检验的基本原理是假设零假设,即两个变量之间没有关联。
然后根据观察情况得到的频率表,计算出预期频率表。
最后,使用其中一种统计量来比较观察频率和预期频率。
卡方检验的步骤如下:1.构建频数表:根据研究问题,将两个类别变量的数据构建成一个二维频数表。
其中,行可以表示一个类别变量的不同取值,列可以表示另一个类别变量的不同取值。
然后将观察到的频数填入表格中。
例子:类别变量B类别变量AA1A2A3A4B1n11n12n13n14B2n21n22n23n24B3n31n32n33n342.计算预期频数:根据零假设,我们可以通过行和列的边际频数计算出期望频数。
每个单元的期望频数可以使用以下公式计算:期望频数=(行的边际频数*列的边际频数)/总频数例子:类别变量B类别变量AA1A2A3A4B1e11e12e13e14B2e21e22e23e24B3e31e32e33e34其中,eij表示第i行,第j列的预期频数。
3.计算卡方统计量:通过使用观察频数和预期频数,可以计算出卡方统计量,用于比较差异的程度。
卡方统计量的计算公式如下:χ²=Σ[(观察频数-预期频数)²/预期频数]其中,Σ表示对所有单元进行求和。
4.自由度和临界值:计算自由度和基于显著水平的临界值。
自由度的计算公式为:自由度=(行数-1)*(列数-1)临界值可以从卡方分布表中获取,根据给定的显著水平和自由度。
5.判断显著性:根据卡方统计量和临界值的比较,判断是否存在显著性差异。
如果卡方统计量大于临界值,则拒绝零假设,认为两个变量之间存在显著关联。
卡方检验的应用广泛,特别适用于两个分类变量之间的关联性分析。
它可以用于许多领域的研究和实践,例如医学、社会科学、市场研究等。
第十一章2χ检验2χ检验(chi-square test)是英国统计学家K. Pearson于1900年提出的,以2χ分布(chi-square distribution)和拟合优度检验(goodness-of-fit test)为理论依据,是一种应用范围很广的统计方法。
本章主要介绍率或构成比比较的2χ检验,频数分布的拟合优度2χ检验,线χ检验,以及四格表的Fisher确切概率法。
性趋势2第一节2χ检验的基本思想2χ检验是在2χ分布的基础上,利用样本信息考察样本频数分布与假设成立条件下的理论频数分布之间差异的假设检验方法。
下面以例11.1为例,说明2χ检验的基本思想。
例11.1 某研究者欲比较血塞通注射液和银杏达莫注射液治疗急性脑梗死的效果,将240例急性脑梗死患者随机分为两组,一组给予血塞通注射液治疗,另一组给予银杏达莫注射液治疗,一个疗程后观察结果,见表11.1。
问两种针剂治疗急性脑梗死的有效率是否有差别?表11.1 血塞通和银杏达莫治疗急性脑梗死的疗效血塞通114 6 120 95.00银杏达莫104 16 120 86.67合计218 22 240 90.83表11.1中,114、6、104、16这4个数据是分组变量药物(一般作为行变量)与效应指标疗效(一般作为列变量)交叉分组后,基于样本观察到的发生频数,称为实际频数(actual frequency),用符号A表示。
行合计、列合计、总合计及有效率是根据这4个基本数据计算而来。
该类型资料称为22⨯列联表资料,亦称四格表(fourfold table)资料。
血塞通组的有效率(95.00%)和银杏达莫组的有效率(86.67%)仅是样本观察的结果,由于存在抽样误差,需进行假设检验,才能得到关于两种针剂治疗急性脑梗死的总体有效率是否有差别的结论。
当两样本含量均比较大时,可以采用第十章介绍的两样本率比较的Z检验,还可采用本章介绍的2χ检验。
一、对总体建立假设例11.1的无效假设为012:H ππ=,即两种针剂治疗急性脑梗死的有效率相同。
《卫生统计学》思考题参考答案第一章绪论1、统计资料可以分为那几种类型?举例说明不同类型资料之间是如何转换的?答:(1)1定量资料(离散型变量、连续型变量)、2无序分类资料(二项分类资料、无序多项分类资料)、3有序分类资料(即等级资料);(2)例如人的健康状况可分为“非常好、较好、一般、差、非常差”5个等级,应归为等级资料,若将该五个等级赋值为5、4、3、2、1,就可按定量资料处理。
2、统计工作可分为那几个步骤?答:设计、收集资料、整理资料、分析资料四个步骤。
3、举例说明小概率事件的含义。
答:某人打靶100次,中靶次数少于等于5,那么该人一次打中靶的概率≤0.05,即可称该人一次打中靶的事件为小概率事件,可以视为很可能不发生。
第二章调查研究设计1、调查研究有何特点?答:(1)不能人为施加干预措施(2)不能随机分组(3)很难控制干扰因素(4)一般不能下因果结论2、四种常用的抽样方法各有什么特点?答:(1)单纯随机抽样:优点是操作简单,统计量的计算较简便;缺点是当总体观察单位数量庞大时,逐一编号繁复,有时难以做到。
(2)系统抽样:优点是易于理解、操作简便,被抽到的观察单位在总体中分布均匀,抽样误差较单纯随机抽样小;缺点是在某些情况下会出现偏性或周期性变化。
(3)分层抽样:优点是抽样误差小,各层可以独立进行统计分析,适合大规模统计;缺点是事先要进行分层,操作麻烦。
(4)整群抽样:优点是易于组织和操作大规模抽样调查;缺点是抽样误差大。
3、调查设计包括那些基本内容?答:(1)明确调查目的和指标(2)确定调查对象和观察单位(3)选择调查方法和技术(4)估计样本大小(5)编制调查表(6)评价问卷的信度和效度(7)制定资料的收集计划(8)指定资料的整理与分析计划(9)制定调查的组织措施4、调查表中包含那几种项目?答:(1)分析项目直接整理计算的必须的内容;(2)备查项目保证分析项目填写得完整和准确的内容;(3)其他项目大型调查表的前言和表底附注。
卡方检验的构造原理解释说明以及概述1. 引言1.1 概述卡方检验,也称为卡方拟合度检验,是一种常用的统计方法,用于判断观察数据与期望数据之间是否存在显著差异。
它是由1880年代英国统计学家皮尔逊(Karl Pearson)提出的,并成为统计学中一项重要的假设检验工具。
1.2 文章结构本文将首先介绍卡方检验的构造原理,包括该方法的背景与发展历程、假设检验基本概念以及构造原理及假设条件。
接着,文章会详细解释说明卡方检验的相关内容,包括检验统计量及其分布、P值的计算方法与判断标准,以及常见误差类型与校正方法。
然后,我们将对卡方检验在不同领域中的应用进行概述:生物医学研究、社会科学和工程技术。
最后,在结论部分总结了卡方检验的重要性和优缺点,并展望了未来在该研究领域可能出现的发展趋势。
1.3 目的本文旨在深入探讨卡方检验这一统计学方法,全面阐述其构造原理、解释说明以及应用领域概述。
希望通过本文的阐述,读者能够更好地理解和运用卡方检验,为相关领域的研究提供参考,并促进该方法在未来的发展与应用。
2. 卡方检验的构造原理2.1 背景与发展历程在统计学中,卡方检验是一种常用的假设检验方法,用于判断观察值与期望值之间的差异是否显著。
卡方检验最早由卡尔·皮尔逊(Karl Pearson)在19世纪末提出,并受到了罗纳德·费舍尔(Ronald Fisher)等人的进一步发展和推广。
2.2 假设检验基本概念在进行卡方检验时,我们需要建立一个原假设(Null Hypothesis,H0)和一个备择假设(Alternative Hypothesis,H1)。
原假设通常表示无关性、随机性或相等性的假设,而备择假设则表明存在相关性、差异或不相等性。
2.3 构造原理及假设条件卡方检验基于观察频数与期望频数之间的差异来判断数据是否遵循某种分布或相互独立。
其构造原理可以简单描述如下:步骤1:收集数据并得到数据表格。
第十一章 相关分析练习题:1.某大型公司为了了解公司员工对于公司福利的满意程度,做了一个抽样调查,结果如下:老员工 新员工 合计 满意 90 35 125 一般 50 40 90 不满意 42 61 103 合计182136318(1)新老员工对于公司福利的满意程度是否有差异?(显著性水平为0.05) (2)如果有显著性差异,请计算Lambda 系数和tau -y 系数。
(3)请用第十章讲到的内容,计算C 系数,比较一下C 系数与Lambda 系数、tau -y 系数有多大差异。
解:(1)研究假设H 1:两者有显著差异 无假设H 0:两者没有显著差异df =(r -1)(c -1)=(3-1)⨯(2-1)=2 2()222.64o e ef f f χ-==∑显著性水平为0.05,查卡方分布表可得,当自由度为2时,0.05的显著性水平下的临界值为5.991,检验统计值22.64>5.991,落在否定域内,因此否定虚无假设,接受研究假设,即在0.05的显著性水平下,新老员工对于公司福利的满意程度有显著差异。
(2)非对称形式:Lambda 系数=90611250.135318125yyyx ymM n M λ-+-===--∑tau-y 测量法: 1()(318125)125(31890)90(318103)103318318318y yn F F E n--⨯-⨯-⨯==++∑=210.032()(18290)90(18250)50(18242)42182(13635)35(13640)40(13661)61136201.93x xF f fE F -=-⨯+-⨯+-⨯=-⨯+-⨯+-⨯+=∑121210.03201.930.04210.03E E tau y E ---==≈ (3)0.25780.26C ===≈由上面的三个系数结果可以看出,同样是计算两个变量之间的相关关系,选用不同的方法进行计算时,结果存在很大的差异。