(完整word版)常见分布的期望和方差
- 格式:doc
- 大小:256.01 KB
- 文档页数:5
01分布的期望和方差
01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np (1-p)。
一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。
可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
[x]为取整函数,即为不超过x的最大整数。
01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np(1-p)。
一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。
可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
[x]为取整函数,即为不超过x的最大整数。
罕有散布的期望和方差(0,1)N 2()Yx n t =概率与数理统计重点摘要1.正态散布的盘算:()()()X F x P X x μσ-=≤=Φ.2.随机变量函数的概率密度:X 是屈服某种散布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =.(拜见P66~72)3.散布函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具有以下基赋性质:⑴.是变量x,y 的非降函数;⑵.0(,)1F x y ≤≤,对于随意率性固定的x,y 有:(,)(,)0F y F x -∞=-∞=; ⑶.(,)F x y 关于x 右持续,关于y 右持续;⑷.对于随意率性的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:4.一个主要的散布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5.二维随机变量的边沿散布:边沿概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿散布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态散布的边沿散布为一维正态散布.6.随机变量的自力性:若(,)()()X Y F x y F x F y =则称随机变量X,Y 互相自力.简称X 与Y 自力.7.两个自力随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰个中Z =X +Y8.两个自力正态随机变量的线性组合仍屈服正态散布,即22221212(,Z aX bY N a b a b μμσσ=+++). 9.期望的性质:……(3).()()()E X Y E X E Y +=+;(4).若X,Y 互相自力,则()()()E XY E X E Y =. 10.方差:22()()(())D X E X E X =-.若X,Y不相干,则()()()D X Y D X D Y +=+,不然()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11.协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X,Y 自力,则(,)0Cov X Y =,此时称:X 与Y 不相干. 12.相干系数:(,)()()XY Cov X Y X Y ρσσ==1XY ρ≤,当且仅当X 与Y 消失线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩ 当 当。
概率论八大分布的期望和方差
概率论是数学中一个很重要的分支,它通过概率来研究不确定性事件发生的规律。
其中,概率论8大分布描述了多次实验和事件中,可能出现的概率位置及其期望等统计量,被广泛用于对数据的拟合和预测。
首先说明的是正态分布,即平均数和方差成正比的分布,它的期望为μ,标准差为σ,因此它的方差为σ²。
接下来介绍的是指数分布,它是描述数据发生在某一时刻及其之前的分布,其期望是1/λ,方差也为1/λ²,其中λ>0。
三角分布是描述一个实验发生三次时的分布,其期望是a+b+c/3,方差为abcb/36。
威布尔分布的期望是α/(1+α),方差为α/((1+α)²(1+2α))。
泊松分布是按概率论中常用的概率模型,其期望是λ,方差也为λ。
F比例的期望依赖于自由度的不同,给定两个自由度为m和n的差异,它的期望为m/n,方差为2m²n²/((m+n)²(m+n+2))。
相间分布是另一种概率模型,它描述了一个试验出现在某个位置的概率,它的期望为μ+σ/2,及其方差为(σ/2)²。
最后要介绍的是Gamma分布,它由α和β决定,其期望为αβ,方差为
αβ²。
以上是概率论8种分布的期望和方差。
科学家们利用这些概念,处理概率性事件作出合理的决策,从而取得成果。
从长远来看,熟悉概率论8大分布的期望和方差,对于科学家精确处理概率性问题有着至关重要的作用。
常见分布的期望与方差的计算常见分布的期望与方差的计算这些分布的期望和方差要求同学们熟记,以下是计算过程,供课下看。
1.0-1分布已知随机变量X的分布律为X10pp1 p则有E(X)=1 p+0 q=p,D(X)=E(X2) [E(X)]2=12p+02(1 p) p2=pq.2.二项分布设随机变量X 服从参数为n, p 二项分布,(法一)设Xi为第i 次试验中事件A 发生的次数,i=1,2,“,n则X=∑Xii=1nn显然,Xi 相互独立均服从参数为p 的0-1分布,所以E(X)=∑E(Xi)=np.i=1D(X)=∑D(Xi)=np(1 p).i=1n(法二) X的分布律为n k P{ X= k}= p (1 p )n k, ( k= 0,1,2,", n), k n n n k 则有 E ( X )=∑ k P{ X= k}=∑ k p (1 p )n k k=0 k k=0kn!=∑ p k (1 p )n k k= 0 k ! ( n k )! np( n 1)!=∑ p k 1 (1 p )( n 1) ( k 1) k=1 ( k 1)![( n 1) ( k 1)]!n n( n 1)!= np∑ p k 1 (1 p )( n 1) ( k 1) k=1 ( k 1)![( n 1) ( k 1)]!n= np[ p+ (1 p )]n 1=npE ( X 2 )= E[ X ( X 1)+ X]= E[ X ( X 1)]+ E ( X ) k k=∑ k ( k 1) p (1 p )n k+ np n k=0nk ( k 1)n! k p (1 p )n k+ np=∑ k= 0 k !( n k )!n( n 2)!= n( n 1) p∑ p k 2 (1 p)( n 2 ) ( k 2 )+ np k= 2 ( n k )! ( k 2)!2 n = n( n 1) p 2[ p+ (1 p )]n 2+ np= ( n 2 n) p 2+ np.D( X )= E ( X 2 ) [ E ( X )]2= ( n 2 n) p 2+ np ( np )2 = np(1 p )3.泊松分布设X~π(λ ),且分布律为P{ X= k}=λkk!∞e λ, k= 0,1,2,",λ 0.则有E( X )=∑ k k=0λkk!e λ= e λ∑k=1∞λ k 1( k 1)!λ=λe λ eλ=λE ( X 2 )= E[ X ( X 1)+ X]= E[ X ( X 1)]+ E ( X )=∑ k ( k 1) k=0+∞λkk!e λ+λ+λ=λ 2e λ eλ+λ=λ 2+λ .=λ 2e λ∑ k=2λk 2( k 2)!所以D( X )= E ( X 2 ) [ E ( X )]2=λ2+λ λ2=λ泊松分布的期望和方差都等于参数λ .4.均匀分布设X~ U (a, b ),其概率密度为1, f ( x)= b a 0,∞a x b,其他 .b1 1 E ( X )= xf ( x ) d x= x d x则有= (a+ b).∫ ∞∫a b a2 D( X )= E ( X2 ) [ E ( X )]2 1 a+ b (b a ) 2=∫ x dx = a b a 2 12b225.指数分布设随机变量X服从指数分布,其概率密度为1 xθ e, f ( x )= θ 0,x 0, x≤ 0.+∞其中θ 0.1 xθ x e dxθ则有E ( X )=∫ xf ( x ) d x=∫ ∞+∞0= xe2xθ+∞ 0 2+∫ e xθ d x0+∞ 2+∞=θD( X )= E ( X ) [ E ( X )]=∫0= 2θ 2 θ 21 xθ x e d x θ2θ6.正态分布设X~ N (μ,σ 2 ),其概率密度为1 f ( x)= e 2πσ( x μ )2 2σ 2 ,σ 0, ∞ x+∞ .则有E ( X )=∫ xf ( x ) d x ∞+∞1=∫ x e ∞ 2πσ+∞( x μ )2 2σ 2d x.x μ令= t x=μ+σ t,σ所以1 E( X )=∫ x e ∞ 2πσ+∞( x μ )2 2σ 2dx1+∞= (μ+σt)e∫ 2π ∞ 1=μ e∫ 2π=μ.t2+∞ 2 ∞t2 2dtt2 2σ+∞ dt+ te∫ 2π ∞dtD( X )=∫ ( x μ ) f ( x ) d x2 ∞+∞1=∫ ( x μ) e d x. ∞ 2πσ x μ令= t,得σ t2 2 +∞σ 2 2 D( X )= t e dt∫ 2π ∞+∞ t2 t2 2 +∞ σ 2 2= te+∫ e dt ∞ 2π ∞ 2σ= 0+ 2π=σ 2 . 2π+∞ 2( x μ )2 2σ 2分布参数0 p1 n≥ 1, 0 p1λ0ab。
常见分布的期望和方差x n(0,1)N2()概率与数理统计重点摘要1、正态分布的计算:()()()X F x P X x μσ-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)3、分布函数(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰具有以下基本性质:⑴、是变量x ,y 的非降函数;⑵、0(,)1F x y ≤≤,对于任意固定的x,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;⑷、对于任意的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥4、一个重要的分布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:边缘概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边缘分布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy duF y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立.7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、两个独立正态随机变量的线性组合仍服从正态分布,即22221212(,Z aX bYN a b a b μμσσ=+++)。
常见分布的期望和方差x n(0,1)N2()概率与数理统计重点摘要1、正态分布的计算:()()()X F x P X x μσ-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)3、分布函数(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰具有以下基本性质:⑴、是变量x ,y 的非降函数;⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;⑷、对于任意的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥4、一个重要的分布函数:1(,)(arctan )(arctan )23x yF x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:边缘概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边缘分布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy duF y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、两个独立正态随机变量的线性组合仍服从正态分布,即22221212(,Z aX bYN a b a b μμσσ=+++)。
常见分布的期望和方差精选编写.DOCX
1. 均匀分布:
均匀分布是指区间[a,b]中的随机变量X具有相等的概率密度函数,也就是说,每个数值在该区间中的出现概率是相等的。
其期望值和方差分别为:
期望值:E(X) = (a+b)/2
方差:Var(X) = (b-a)^2 / 12
2. 二项分布:
二项分布是指n次独立的伯努利试验中,成功的次数X服从二项分布B(n,p)。
其中p 表示每次试验中成功的概率,n表示试验次数。
其期望值和方差分别为:
3. 泊松分布:
泊松分布是指单位时间或单位空间中,某事件的发生次数符合泊松分布的随机变量。
其期望值和方差分别为:
4. 正态分布:
正态分布是以均值μ为中心,标准差σ来描述的一类连续型随机变量的分布。
正态分布在概率统计学中有着重要的应用。
其期望值和方差分别为:
5. 指数分布:
指数分布是一种描述时间间隔的概率分布,经常用于可靠性分析。
其期望值和方差分别为:。
常见分布的期望和方差概率与数理统计重点摘要1、正态分布的计算:()()()X F x P X x μσ-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)3、分布函数(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰具有以下基本性质:⑴、是变量x ,y 的非降函数;⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;⑷、对于任意的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥4、一个重要的分布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:边缘概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边缘分布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy duF y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、两个独立正态随机变量的线性组合仍服从正态分布,即22221212(,Z aX bY N a b a b μμσσ=+++) 。
常见分布的期望和方差
x n
(0,1)
N()
概率与数理统计重点摘要
1、正态分布的计算:()()(
)X F x P X x μ
σ
-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)
3、分布函数(,)(,)x y
F x y f u v dudv -∞-∞
=
⎰⎰
具有以下基本性质:
⑴、是变量x ,y 的非降函数;
⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;
⑷、对于任意的11221212(,),(,),,x y x y x x y y <<
,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥
4、一个重要的分布函数:1(,)(arctan )(arctan )23
x y
F x y πππ2=++22的概率密度为:2222
6(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:
边缘概率密度:
()(,)()(,)X Y f x f x y dy
f y f x y dx
+∞
-∞+∞
-∞
==⎰⎰
边缘分布函数:
()(,)[(,)]()(,)[(,)]x
X y
Y F x F x f u y dy du
F y F y f x v dx dv
+∞
-∞-∞+∞
-∞
-∞
=+∞==+∞=⎰⎰
⎰⎰
二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞
+∞
-∞
-∞
=
-=-⎰
⎰
其中Z =X +Y
8、两个独立正态随机变量的线性组合仍服从正态分布,即2222
1212(,Z aX bY N a b a b μμσσ=+++)。
9、期望的性质:……(3)、()()()
EX Y EX EY +=+;(4)、若X ,Y 相互独立,则()()()E XY E X E Y =。
10、方差: 2
2
()()(())D X E X E X =-。
若X ,Y 不相关,则()()()D X Y D X D Y +=+,否则()()()2(,)D X Y D X D Y Cov X Y +=++,
()()()2(,)D X Y D X D Y Cov X Y -=+-
11、协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独立,则(,)0Cov X Y =,此时称:X 与Y 不相关。
12
、相关系数:(,)
()()
XY Cov X Y X Y ρσσ=
=
1XY ρ≤,当且仅当X 与Y 存在线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩
当 当。
13、k 阶原点矩:()k k v E X =,k 阶中心矩:[(())]k
k E X E X μ=-。
14、切比雪夫不等式:{}
{}2
2
()
()
(),()1D X D X P X E X P X E X εεεε-≥≤
-<≤-
或。
贝努利大数定律:0
lim 1n m P p n ε→⎧⎫
-<=⎨
⎬⎩⎭。
15、独立同分布序列的切比雪夫大数定律:因2111n i i P X n n σμεε2
=⎧⎫-<≥-⎨⎬⎩⎭∑,所以011lim 1n i n i P X n με→=⎧⎫-<=⎨⎬⎩⎭
∑ 。
16、独立同分布序列的中心极限定理:
(1)、当n 充分大时,独立同分布的随机变量之和1
n
n i
i Z X
==
∑的分布近似于正态分布2
(,)N n n μσ。
(2)、对于12,,...n X X X 的平均值11n i i X X n ==∑,有11()()n i i n E X E X n n μ
μ===
=∑,221
1()()n
i i n D X D X n n n σσ22
====∑,即独立同分布的随机
变量的均值当n 充分大时,近似服从正态分布()N n
σμ2
,。
(3)、由上可知:{}{}lim ()()()()n n n P a Z b b a P a Z b b a →∞
<≤=Φ-Φ⇒<≤≈Φ-Φ。
17、棣莫弗—拉普拉斯中心极限定理:设m 是n 次独立重复试验中事件A 发生的次数,p 是事件A 发生的概率,则对任意x
,
lim ()n P x x →∞
⎧⎫⎪≤=Φ⎬⎪⎭
, 其中1q p =-。
(1)、当n 充分大时,m 近似服从正态分布,()N np npq ,。
(2)、当n 充分大时,
m
n
近似服从正态分布,(,)pq N p n 。
18、参数的矩估计和似然估计:(参见P200)
19
20。