常见分布的期望和方差
- 格式:doc
- 大小:262.00 KB
- 文档页数:5
常见分布的期望和方差概率与数理统计重点摘要1、正态分布的计算:()()()X F x P X x μσ-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)3、分布函数(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰具有以下基本性质:⑴、是变量x ,y 的非降函数;⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;⑷、对于任意的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥4、一个重要的分布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:边缘概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边缘分布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy duF y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、两个独立正态随机变量的线性组合仍服从正态分布,即22221212(,Z aX bY N a b a b μμσσ=+++) 。
概率分布计算公式概率分布是概率论中重要的概念之一,它描述了随机变量在各个取值上的取值概率。
在实际问题中,我们常常需要计算概率分布以解决相关的概率统计问题。
本文将介绍几种常见的概率分布以及它们的计算公式。
一、二项分布(Binomial Distribution)二项分布是概率论中常用的离散型概率分布,它描述了在一定次数的独立重复试验中,成功事件发生的次数的概率分布。
其计算公式为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功事件发生k次的概率,n表示试验次数,p表示每次试验成功的概率,C(n, k)表示组合数,可以使用n个数任取k个的方式计算。
二项分布的期望为E(X)=np,方差为Var(X)=np(1-p)。
二、泊松分布(Poisson Distribution)泊松分布是一种离散型概率分布,适用于描述单位时间(或单位空间)内随机事件发生的次数。
其计算公式为:P(X=k) = (λ^k * e^(-λ))/k!其中,P(X=k)表示事件发生k次的概率,λ表示单位时间(或单位空间)内事件发生的平均次数,e为自然对数的底。
泊松分布的期望为E(X)=λ,方差为Var(X)=λ。
三、正态分布(Normal Distribution)正态分布是概率论中最重要的连续型概率分布,也称为高斯分布。
它的形状呈钟型曲线,对称于均值。
正态分布在实际问题中得到广泛应用。
其概率密度函数的计算公式为:f(x) = (1 / (σ * √(2π))) * e^((-1/2)*((x-μ)/σ)^2)其中,f(x)表示随机变量X的概率密度函数,μ为均值,σ为标准差,π为数学常数3.14159。
正态分布的期望为E(X)=μ,方差为Var(X)=σ^2。
四、指数分布(Exponential Distribution)指数分布是一种连续型概率分布,其概率密度函数具有常数倍衰减的特点。
概率论各种分布的期望和方差
概率论是描述和研究不确定性现象的基础学科,而概率分布是统计中最基本的概念,其中包括期望和方差。
期望是描述抽样变量数据的一个重要的描述统计量,它反映了该变量的总体分布特征。
方差,也称样本方差,是围绕其期望计算的一个重要的统计量,它能够揭示该抽样变量的变异程度。
对常见的概率分布来说,它们的期望和方差都是可以计算的。
针对均匀分布,它具有特定的概率赋值范围,同时,数学期望采用其平均值作为衡量标准即可计算出,而方差则是概率变量的期望值在两个方向上偏离之和的1/2倍。
此外,对于二项分布来说,它是表示在抽样次数已知且抽样几率未发生变化的情况下,典型抽样变量发生成功事件的次数分布,而它的期望和方差都是根据其抽样概率和抽样次数计算出的,期望是抽样概率乘以抽样次数,而方差则是期望乘以其补数,再乘以抽样次数。
此外,高斯分布是最常用、有着重要作用的概率分布之一,它具有广泛的应用场景,例如在定量分析中,用来进行参数估计或数据拟合,而它的期望和方差的计算也是基于其均值和标准差的,期望就是均值,而方差则是标准差的平方。
此外,指数分布也是一种常用的概率分布,它会用来描述随机变量的行为,主要是其它类型的连续分布之一,其期望和方差也是可以计算的,其期望直接取常数α,而方差是取α²。
综上所述,期望和方差都是无偏抽样变量分析中重要的统计量,它们是针对常见概率分布可以实行计算的重要概念,可以帮助我们更好地理解数据的分布情况,从而使其可以更加准确地进行应用和分析。
欢迎下载 2概率与数理统计重点摘要1、正态分布的计算:()()()X F x P X x μσ-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)3、分布函数(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰具有以下基本性质:⑴、是变量x ,y 的非降函数;⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=;⑶、(,)F x y 关于x 右连续,关于y 右连续;⑷、对于任意的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥4、一个重要的分布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++5、二维随机变量的边缘分布:边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx+∞-∞+∞-∞==⎰⎰边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy duF y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰ 二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
欢迎下载 37、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、两个独立正态随机变量的线性组合仍服从正态分布,即22221212(,Z aX bY N a b a b μμσσ=+++):。
5
5
概率与数理统计重点摘要
1、正态分布的计算:()()(
)X F x P X x μ
σ
-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)
3、分布函数(,)(,)x y
F x y f u v dudv -∞-∞
=
⎰⎰
具有以下基本性质:
⑴、是变量x ,y 的非降函数;
⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;
⑷、对于任意的11221212(,),(,),,x y x y x x y y <<
,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥
4、一个重要的分布函数:1(,)(arctan )(arctan )23
x y
F x y πππ2=++22的概率密度为:2222
6(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:
边缘概率密度:
()(,)()(,)X Y f x f x y dy
f y f x y dx
+∞
-∞+∞
-∞
==⎰⎰
边缘分布函数:
()(,)[(,)]()(,)[(,)]x
X y
Y F x F x f u y dy du
F y F y f x v dx dv
+∞
-∞-∞+∞
-∞
-∞
=+∞==+∞=⎰⎰
⎰⎰
二维正态分布的边缘分布为一维正态分布。
5
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞
+∞
-∞
-∞
=
-=-⎰
⎰
其中Z =X +Y
8、两个独立正态随机变量的线性组合仍服从正态分布,即2222
1212(,Z aX bY
N a b a b μμσσ=+++)。
9、期望的性质:……(3)、()()()E X Y E X E Y +=+;(4)、若X ,Y 相互独立,则()()()E XY E X E Y =。
10、方差: 2
2
()()(())D X E X E X =-。
若X ,Y 不相关,则()()()D X Y D X D Y +=+,否则()()()2(,)D X Y D X D Y Cov X Y +=++,
()()()2(,)D X Y D X D Y Cov X Y -=+-
11、协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独立,则(,)0Cov X Y =,此时称:X 与Y 不相关。
12
、相关系数:(,)
()()
XY Cov X Y X Y ρσσ=
=
1XY ρ≤,当且仅当X 与Y 存在线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩
当 当。
13、k 阶原点矩:()k k v E X =,k 阶中心矩:[(())]k
k E X E X μ=-。
14、切比雪夫不等式:{}
{}2
2
()
()
(),()1D X D X P X E X P X E X εεεε-≥≤
-<≤-
或。
贝努利大数定律:0
lim 1n m P p n ε→⎧⎫
-<=⎨
⎬⎩⎭。
15、独立同分布序列的切比雪夫大数定律:因2111n i i P X n n σμεε2
=⎧⎫-<≥-⎨⎬⎩⎭∑,所以011lim 1n i n i P X n με→=⎧⎫-<=⎨⎬⎩⎭
∑ 。
16、独立同分布序列的中心极限定理:
(1)、当n 充分大时,独立同分布的随机变量之和1
n
n i
i Z X
==
∑的分布近似于正态分布2
(,)N n n μσ。
5
(2)、对于12,,...n X X X 的平均值11n i i X X n ==∑,有11()()n i i n E X E X n n
μ
μ===
=∑,221
1()()n
i i n D X D X n n n σσ22
====∑,即独立同分布的随机变量的均值当n 充分大时,近似服从正态分布()N n
σμ2
,。
(3)、由上可知:{}{}lim ()()()()n n n P a Z b b a P a Z b b a →∞
<≤=Φ-Φ⇒<≤≈Φ-Φ。
17、棣莫弗—拉普拉斯中心极限定理:设m 是n 次独立重复试验中事件A 发生的次数,p 是事件A 发生的概率,则对任意x
,
lim ()n P x x →∞
⎧⎫⎪
≤=Φ⎬⎪⎭
, 其中1q p =-。
(1)、当n 充分大时,m 近似服从正态分布,()N np npq ,。
(2)、当n 充分大时,
m
n
近似服从正态分布,(,)pq N p n 。
18、参数的矩估计和似然估计:(参见P200)
19
20、关于正态总值均值及方差的假设检验,参见P243和P248。
5。