7-5-5函数的初步认识
- 格式:ppt
- 大小:310.50 KB
- 文档页数:13
青岛版(新)数学七年级上册 5.5函数的初步认识1. 什么是函数在数学上,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
简单来说,函数就是输入一个值,通过某种规则运算后输出一个值。
数学中常用的表示函数的方式是用一个小写的字母表示函数,例如 f(x),其中 f 就是函数的名称,x 表示输入的值。
在数学中,我们通常将输入的值称为自变量,输出的值称为因变量。
2. 函数的形式描述函数可以通过不同的形式来进行描述,常见的有以下几种:2.1. 函数的图像描述函数的图像描述是通过绘制函数的图像来表示函数的关系。
在二维坐标系中,自变量通常用 x 表示,因变量用 y 表示。
我们将所有的自变量与因变量的对应关系用线段连接起来,就得到了函数的图像。
例如,我们有一个函数 f(x) = x^2,可以通过绘制图像来表示这个函数的关系。
图像是一个开口向上的抛物线。
2.2. 函数的公式描述函数也可以用公式来表示,通过给出函数的计算规则,我们可以根据自变量的值来计算出因变量的值。
例如,函数 f(x) = 2x + 1 就是一个通过公式进行描述的函数。
我们可以根据给定的 x 值,通过计算 2x + 1 的结果来获取函数的值。
2.3. 函数的表格描述除了图像和公式,函数还可以通过表格来进行描述。
我们将自变量的取值和相应的函数值放在一张表格中,以展示函数的关系。
例如,下表展示了函数 f(x) = x^2 在自变量 x 取不同值时的函数值:x f(x)-24-11001124表格的每一行表示一个点,两列分别是自变量和因变量的取值。
3. 函数的性质函数有一些重要的性质,包括定义域、值域、单调性、奇偶性等。
3.1. 定义域和值域定义域是自变量的取值范围,值域是因变量的取值范围。
对于函数 f(x) = x^2,其定义域是所有实数,因为任何实数都可以作为自变量。
而值域是所有大于等于 0 的实数,因为平方得到的结果总是大于等于 0。
初中数学知识点总结浙教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。
- 整数的四则运算规则及其应用。
- 分数的加减乘除运算,分数的化简和比较大小。
- 代数式的基本概念,包括单项式、多项式、同类项和合并同类项。
2. 代数表达式与方程- 代数表达式的书写和简化。
- 一元一次方程、二元一次方程的解法及其应用。
- 不等式及其解集的表示,一元一次不等式和一元一次不等式组的解法。
3. 函数的初步认识- 函数的概念,函数的定义域和值域。
- 线性函数、二次函数的图像和性质。
- 函数的简单运算,包括加减乘除和复合函数。
二、几何1. 几何图形初步- 点、线、面的基本性质。
- 角的概念,包括邻角、对角、同位角等。
- 直线、射线、线段的性质和关系。
2. 平面图形- 三角形的分类和性质,包括等边三角形、等腰三角形和直角三角形。
- 四边形的分类和性质,重点是矩形、正方形、平行四边形、梯形。
- 圆的基本性质,包括圆心、半径、直径、弦、弧、切线等。
3. 几何图形的计算- 三角形、四边形和圆的面积计算公式。
- 矩形、正方形和圆的周长(或称“围长”)计算。
- 体积和表面积的计算,主要是长方体和圆柱体。
4. 几何变换- 平移、旋转和轴对称(反射)的概念及其在几何图形中的应用。
- 通过具体操作改变图形的位置和形状,理解变换的不改变性质。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 频数分布表和频数分布直方图的绘制和解读。
- 平均数、中位数和众数的概念及其计算方法。
2. 概率- 随机事件的概念和分类。
- 概率的初步认识,包括确定事件和随机事件的概率计算。
- 简单事件发生的可能性分析。
四、应用题1. 数的应用- 利用所学的数的知识解决实际问题,如购物、时间计算等。
- 利率、比例和百分数的应用。
2. 代数的应用- 一元一次方程和不等式在实际问题中的应用。
- 通过代数表达式简化和运算解决实际问题。
函数的初步认识的教学教案有关函数的初步认识的教学教案目标1.理解坐标平面内点的坐标特征并会应用;2.能结合图像对简单实际问题中的函数关系进行分析;3.能用适当的函数表示法刻画简单实际问题中变量之间的关系。
重点能用适当的函数表示法刻画简单实际问题中变量之间的关系难点能用适当的函数表示法刻画简单实际问题中变量之间的关系问题1:象限点的`坐标特征:1.已知平面直角坐标系中两点A(x,1)、B(-5,y).(1)若点A、B 关于x轴对称,则x=____,y=____;(2)若点A、B关于y轴对称,则x=____,y=_____;(3)若点A、B关于原点对称,则x=____,y=_____.2.已知点P(2m一5,m一1),当m 时,点P在二、四象限的角平分线上;当m 时,点P在一、三象限的角平分线上.3.在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A′B′C′则与点B′关于x轴对称的点的坐标是【相关题型】1. P31 例2 例32. P32 课堂训练2、4、6、73. P33 课外巩固1、5、拓展题问题2:自变量的取值范围:函数中自变量x的取值范围是【相关题型】 1. P31 例12. P32 课外巩固4问题3:结合实际问题看图象1.小颖从家出发,直走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,下图中表示小颖离家时间与距离之间的关系的是()2.如图所示,在直角坐标系中,图(1)中的图案“A”经过变换分别变成图(2)至图(6)中的相应图案(虚线对应于原图案).试写出图(2)至图(6)中各顶点的坐标,探索每次变换前后图案发生了什么变化,对应点的坐标之间有什么关系?【相关题型】 1. P32 课堂训练1、3、53. P33 课外巩固2、3、备注巩固案1.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()A. (4,3)B. (-2,-1)C. (4,-1)D. (-2,3)2.在直角坐标系中,点M(sin50°,-cos70°)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.点A(-2,-3)和点B(2,3)在直角坐标系中()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 不关于坐标轴和原点对称4.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或-6 B.6 C.-6 D.3或-35.在直角坐标系中,点A(-3,m)与点B(n,1)关于x轴对称,则m=________,n=________.6.点P(a+1,a-1)在直角坐标系的y轴上,则点P坐标为_____.7.在直角坐标系中,点A(-1,1),将线段OA(O为坐标原点)绕点O 逆时针旋转135°得线段OB,则点B的坐标是______.8.Rt△ABC中,∠C=90°,AC=BC,AB=4,试建立适当的直角坐标系,写出各顶点的坐标.9.在平面直角坐标系中,分别描出点A(-1,0),B(0,2),C(1,0),D(0,-2).(1)试判断四边形ABCD的形状;(2)若B、D两点不动,你能通过变动点A、C的位置使四边形ABCD成为正方形吗?若能,请写出变动后的点A、C的坐标.10.如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程的两个根,且OA>OB(1)求的值.(2)若E为x轴上的点,且求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.。
第五单元代数式与函数的初步认识教学目标和要求1.借助现实情境了解代数式,进一步理解用字母表示数的意义。
2.能分析具体问题中的简单数量关系,并能用代数式表示;能解释一些简单代数式的实际背景和几何意义。
3.探索简单实例中的数量关系和变化规律,了解常量和变量的意义。
4.经历探索简单实例中数量关系和变化规律,并用代数式表示到文字语言叙述的双向过程。
教材分析本单元教学是在学生认识简单的数量关系,接触过一些字母式子如计算公式、运算规律的基础上安排的。
学生掌握这部分内容,有利于学习方程、比例以及其他代数式知识。
也有利于体验数学表达的简练,发展学生的符号感。
教材内容分两段安排:第一阶段是代数式,主要介绍用字母表示数;第二阶段是在第一阶段的基础上进一步用字母表示数——函数初步认识。
教材力求突出以下几方面:创设丰富的生活环境,突出数量关系,提供丰富的、有吸引力的探索活动和现实生活中的问题难题。
教学重点难点:重点是代数式和函数的初步认识,能够建立方程、不等式、函数等数学模型。
难点是列代数式,区分具体问题中的常量和变量,理解它们之间的函数关系。
学习本章的关键是帮助学生初步建立符号意识,使学生能够理解并且运用符号表示数、数量关系和变化规律,感悟符号的使用是数学表达的重要工具。
学情分析在小学阶段,学生虽然已经初步接触过用字母表示数,但对字母表示数的意义和认识比较肤浅,要完成这个飞跃,必须从大量的实例中体会、领悟。
本章不仅要求学生进一步认识用字母表示数的意义,还要理解字母可以与数一起参与运算,可以用数、字母、运算符号组成的代数式表示具有某种普遍意义的数量关系。
注意事项1.关注学生在探索数量关系中的参与态度、思维水平和抽象能力;2.在学生进行从语言叙述道代数式表示、从代数式表示到语言叙述的活动中,关注学生与他人进行合作与交流的意识;3.在评价学生对常量、变量、函数表达式的掌握程度时,关注他们对问题的理解诶和解决问题时的表现。
教学方法建议1.重视在具体情境中探索数量关系和变化规律的活动,使学生经历符号化的过程;2.鼓励学生对代数式意义进行多方面的解释,使学生不断深化对字母表示数的意义的认识,加强学生对数学的理解;3.鼓励学生积极参与观察、思考、尝试、猜测的数学活动,促使学生主动地、富有个性的学习,不断提高发现问题、分析问题和解决问题的能力;4.重视读、列代数式的教学,发展学生运用数学语言进行表达和交流的能力;5.求代数式的值是由一般到特殊的过程,教学中,应让学生进一步体会到代数式的意义和作用;6.函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的概念之一,教学过程中,要让学生获得函数的感性认识。
青岛版七年级数学上册《5.5 函数的初步认识》同步练习-带参考答案一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.下列各曲线中表示y是x的函数的是( )3.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=1x.其中y是x函数的是( )A.①②③B.①②③④C.①③D.①③④4.在下列各图象中,y不是x函数的是( )A. B. C. D.5.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60) D.y=12(60-x)(0<x<30)6.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(时)之间的函数关系式及自变量的取值范围是( )A.s =120﹣30t(0≤t ≤4)B.s =30t(0≤t ≤4)C.s =120﹣30t(t>0)D.s =30t(t =4)7.如图,根据流程图中的程序,当输出数值y=5时,输入的数值x 是( )A.17B.-13C.17或-13D.17或-178.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x 与售价y 如下表:长度x/m 1 2 3 4 …售价y/元 8+0.3 16+0.6 24+0.9 32+1.2 …下列用长度x 表示售价y 的关系式中,正确的是( )A.y=8x+0.3B.y=(8+0.3)xC.y=8+0.3xD.y=8+0.3+x9.根据如图所示的程序计算函数y 的值,若输入x 的值是2时,则输出的y 的值是6,若输入x 的值是3,则输出的y 的值是( )A.6B.7C.8D.910.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一平面直角坐标系中,小亮和妈妈的行进路程S(km)与时间t(h)的函数图象如图所示.根据图象得到下列结论,其中错误的是( )A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在离家12 km处追上小亮D.9:30妈妈追上小亮二、填空题11.一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4 …距离s(m) 2 8 18 32 …写出用t表示s的关系式:________.12.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm,则这样的长方形中y与x的关系可以写为 .13.如图所示的计算程序中,y与x之间的函数表达式为 .14.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x分钟后水壶的水温为y℃,当水开时就不再烧了.(1)y与x的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.15.已知y是x的一次函数,下表列出了部分对应值,则m=.x 1 0 2y 3 m 516.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=95x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.三、解答题17.某剧院的观众席的座位为扇形,且按下列方式设置:排数(x) 1 2 3 4 …50 53 56 59 …座位数(y)(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间函数的表达式.(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.18.为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.19.某超市为了方便顾客,将某品牌的瓜子散装出售时套上了包装袋,其质量x(千克)与售价y(元)之间的关系如下表所示(售价中的0.20元是包装袋的费用),观察表中y与x之间的关系:x 1 2 3 4 …y 6.0+0.20 12.0+0.20 18.0+0.20 24.0+0.20 …(2)写出售价y与数量x之间的关系式.(3)小王想用100元买15千克这种瓜子,请帮他算算钱够用吗?20.一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:温度℃…﹣5 0 5 10 15 …长度cm …9.995 10 10.005 10.01 10.015 …(1)上表反映了温度与长度两个变量之间的关系,其中_______是自变量,_______是函数.(2)当温度是10℃时,合金棒的长度是_______cm.(3)如果合金棒的长度大于10.05cm小于10.15cm,根据表中的数据推测,此时的温度应在______℃~_______℃的范围内.(4)假设温度为x℃时,合金棒的长度为ycm,根据表中数据写出y与x之间的关系式________.(5)当温度为﹣20℃或100℃,合金棒的长度分别为______cm或______cm.21.我们知道,海拔高度每上升1千米,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.(1)写出y与x之间的函数关系式.(2)已知碧云峰高出地面约500米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过上空,若机舱内仪表显示飞机外面的温度为﹣34 ℃,求飞机离地面的高度为多少千米?22.周末,小明和弟弟从家出发,步行去吉林省图书馆学习.出发2分钟后,小明发现弟弟的数学书忘记带了,弟弟继续按原速前往图书馆,小明按原路原速返回家取书,然后骑自行前往图书馆,恰好与弟弟同时到达图书馆.小明和弟弟各自距家的路程y(m)与小明步行的时间x(min)之间的函数图象如图所示.(1)求a的值.(2)求小明取回书后y与x的函数关系式.(3)直接写出小明取回书后与弟弟相距100m的时间.答案1.C2.D.3.D4.C5.D6.A.7.C8.B9.B.10.D.11.答案为:s=2t2(t≥0)12.答案为:y=(12﹣x)x13.答案为:y=-2x+414.答案为:(1)y=8x+20 x 在0﹣﹣10变化;(2)28 60;(3)3.515.答案为:1.16.答案为:7717.解:(1)由图表中数据可得,当x每增加1时,y增加3.(2)由题意,得y=50+3(x-1)=3x+47.(3)某一排不可能有90个座位.理由如下:令y=90,得3x+47=90,解得x=43 3.∵x为整数∴某一排不可能有90个座位.18.解:由图可知,当用水量在0~8 t时每吨水的价格为15.2÷8=1.9(元);当用水量超过8 t时超过8 t部分每吨水的价格为(23.75-15.2)÷(11-8)=2.85(元). ∴该用户当月用水量为(18.05-15.2)÷2.85+8=9(t).19.解:(1)表格中反映了瓜子质量与售价之间的关系.(2)y=6x+0.20.(3)当x=15时,y=6×15+0.20=90.20(元).∵90.20<100∴他的钱够用.20.解:(1)温度;长度(2)10.01(3)50;150(4)y=0.001x+10(5)9.98;10.121.解:(1)y=20﹣6x(x>0).(2)500米=0.5千米,y=20﹣6×0.5=17(℃).答:这时山顶的温度大约为17 ℃.(3)﹣34=20﹣6x,x=9.答:飞机离地面高度为9千米.22.解:(1) a=200÷2×8=800(2)设小明取回书后y与x的函数关系式是y=kx+b.由题意,得k=200,b=-800.∴小明取回书后y与x的函数关系式是y=200x﹣800.(3)由题意100x﹣(200x﹣800)=100,解得x=7∴7min后小明与弟弟相距100m.。
青岛版七年级数学上册《函数的初步认识》说课稿一、引入1. 背景介绍《函数的初步认识》是青岛版七年级数学上册中的一篇重要内容,该部分内容旨在帮助学生初步了解函数的概念及其特点。
学习函数对学生的数学思维能力和问题解决能力的培养具有重要作用。
2. 教学目标通过本节课的学习,学生应能够:•理解函数的概念;•掌握函数的符号表示;•掌握函数的定义域、值域和自变量、因变量的关系。
二、分析1. 教材分析本节课的内容主要涵盖以下几个方面:•函数的定义及符号表示;•函数的定义域、值域;•自变量和因变量的关系;•图示函数的平面直角坐标系。
2. 学情分析大多数学生对函数的概念还比较陌生,对数学符号的理解也需要加强。
需充分利用学生已有的数学知识,通过具体的例子和练习,帮助学生理解抽象的函数概念。
1. 教学方法采用讲授法和示例法相结合的教学方法,通过讲解和演示,引导学生深入理解函数的概念和特点。
2. 教学步骤(1) 函数的定义•先通过一个生活中的例子引入函数的概念,如小明放学后的步行路线与时间的关系,让学生感受函数在生活中的应用;•引导学生描述这个例子中的自变量和因变量;•定义函数:函数是一个将一个数集与另一个数集建立起对应关系的规律;•解释函数的符号表示:函数通常用字母f表示,例如:y = f(x)。
(2) 函数的定义域和值域•引导学生进一步思考函数的定义域和值域的概念;•定义函数的定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
(3) 自变量和因变量的关系•通过具体的例子,如小明放学后的步行路线与时间的关系,让学生观察并描述自变量和因变量之间的关系;•加深学生对自变量和因变量的理解。
(4) 函数的平面直角坐标系示意图•引导学生绘制平面直角坐标系;•解释横坐标和纵坐标的含义,并在平面直角坐标系中标示函数的图象。
1. 教具准备•平面直角坐标系模板;•相关练习题。
2. 教学过程(1) 平面直角坐标系的绘制•在黑板上绘制一个平面直角坐标系;或者提供给学生预先准备好的平面直角坐标系模板。
有关函数的初步认识的教学教案第一章:函数的概念1.1 函数的定义教学目标:让学生理解函数的定义,并能正确表达函数的概念。
教学内容:介绍函数的定义,解释函数的概念。
教学方法:通过举例、讲解、讨论等方式,让学生理解函数的定义。
教学步骤:(1) 引入函数的概念,让学生思考日常生活中遇到的函数例子。
(2) 给出函数的定义,解释函数的概念。
(3) 通过举例说明函数的特性,让学生理解函数的定义。
(4) 让学生进行练习,巩固对函数概念的理解。
1.2 函数的表示方法教学目标:让学生掌握函数的表示方法,并能正确绘制函数图像。
教学内容:介绍函数的图像表示方法,讲解函数图像的特点。
教学方法:通过讲解、绘制函数图像、讨论等方式,让学生掌握函数的表示方法。
教学步骤:(1) 介绍函数的图像表示方法,讲解函数图像的特点。
(2) 让学生绘制一些简单的函数图像,加深对函数图像的理解。
(3) 通过讨论,让学生理解函数图像与函数性质之间的关系。
(4) 让学生进行练习,巩固对函数图像表示方法的理解。
第二章:函数的性质2.1 函数的单调性教学目标:让学生理解函数的单调性,并能判断函数的单调区间。
教学内容:介绍函数的单调性概念,讲解函数单调性的判断方法。
教学方法:通过举例、讲解、讨论等方式,让学生理解函数的单调性。
教学步骤:(1) 引入函数的单调性概念,让学生思考日常生活中遇到的单调函数例子。
(2) 给出函数单调性的定义,讲解函数单调性的判断方法。
(3) 通过举例说明函数的单调性,让学生理解函数的单调性。
(4) 让学生进行练习,巩固对函数单调性的理解。
2.2 函数的奇偶性教学目标:让学生理解函数的奇偶性,并能判断函数的奇偶性。
教学内容:介绍函数的奇偶性概念,讲解函数奇偶性的判断方法。
教学方法:通过举例、讲解、讨论等方式,让学生理解函数的奇偶性。
教学步骤:(1) 引入函数的奇偶性概念,让学生思考日常生活中遇到的奇偶函数例子。
(2) 给出函数奇偶性的定义,讲解函数奇偶性的判断方法。
七年级上册第1章基本的几何图形1.1 我们身边的图形世界1.2 几何图形1.3 线段、射线和直线1.4 线段的比较与作法第2章有理数2.1 有理数2.2 数轴2.3 相反数与绝对值第3章有理数的运算3.1 有理数的加法与减法3.2 有理数的乘法与除法3.3 有理数的乘方3.4 有理数的混合运算3.5 利用计算器进行有理数的运算第4章数据的收集、整理与描述4.1 普查和抽样调查4.2 简单随机抽样4.3 数据的整理4.4 扇形统计图第5章代数式与函数的初步认识5.1 用字母表示数5.2 代数式5.3 代数式的值5.4 生活中的常量与变量5.5 函数的初步认识第6章整式的加减6.1 单项式与多项式6.2 同类项6.3 去括号6.4 整式的加减第7章一元一次方程7.1 等式的基本性质7.2 一元一次方程7.3 一元一次方程的解法7.4 一元一次方程的应用七年级下册第8章角8.1 角的表示8.2 角的比较8.3 角的度量8.4 对顶角8.5 垂直第9章平行线9.1 同位角、内错角、同旁内角9.2 平行线和它的画法9.3 平行线的性质9.4 平行线的判定第10章一次方程组10.1认识二元一次方程组10.2二元一次方程组的解法10.3三元一次方程组10.4列方程组解应用题第11章整式的乘法11.1 同底数幂的乘法11.2 积的乘方与幂的乘方11.3 单项式的乘法11.4 多项式乘多项式11.5 同底数幂的除法11.6 零指数幂与负整数指数幂第12章乘法公式与因式分解12.1 平方差公式12.2 完全平方公式12.3 用提公因式法进行因式分解12.4 用公式法进行因式分解第13章平面图形的认识13.1 三角形13.2 多边形13.3 圆第14章位置与坐标14.1 用有序数对表示位置14.2 平面直角坐标系14.3 用方向和距离描述两个物体的相对位置八年级上册 第1章 全等三角形1.1 全等三角形1.2 怎样判定三角形全等 1.3 尺规作图第2章 图形的轴对称2.1 图形的的轴对称第5章 几何证明初步5.1 定义与命题 5.2 为什么要证明 5.3 什么是几何证明5.4 平行线的性质定理和判定定理 5.5 三角形的内角和定理 5.6 几何证明举例八年级下册第6章 平行四边形1.1 平行四边形及其性质 1.2 平行四边形的判定 1.3 特殊的平行四边形 1.4 中位线定理第7章 实数10.4 一次函数与二元一次方程 10.5 一次函数与一元一次不等式 10.6 一次函数的应用第十一章 图形的平移与旋转 11.1 图形的平移 11.2 图形的旋转 11.3 图形的中心对称九年级上册(待变动)第1章特殊四边形1.1 平行四边形及其性质1.2 平行四边形的判定1.3 特殊的平行四边形1.4 图形的中心对称1.5 梯形1.6 中位线定理第2章图形变换2.1 图形的平移2.2 图形的旋转2.3 图形的位似第3章一元二次方程3.1 一元二次方程3.2 用配方法解一元二次方程3.3 用公式法解一元二次方程3.4 用因式分解法解一元二次方程3.5 一元二次方程的应用第4章对圆的进一步认识4.1 圆的对称性4.2 确定圆的条件4.3 圆周角4.4 直线与圆的位置关系4.5 三角形的内切圆4.6 圆与圆的位置关系4.7 弧长及扇形面积的计算九年级下册(待变动)第5章对函数的再探索5.1 函数与它的表示法5.2 一次函数与一元一次不等式5.3 反比例函数5.4 二次函数5.5 二次函数2y ax=的图象和性质5.6 二次函数2y ax bx c=++的图象和性质5.7 确定二次函数的解析式5.8 二次函数的应用5.9 用图象法解一元二次方程第6章频率与概率6.1 频数与频率6.2 频数分布直方图6.3 用频率估计概率6.4 用树状图计算概率课题学习质数的分布第7章空间图形的初步认识7.1 几种常见的几何体7.2 棱柱的侧面展开图7.3 圆柱、圆锥的侧面展开图第8章投影与识图8.1 从不同的方向看物体8.2 盲区8.3 影子和投影8.4 正投影8.5 物体的三视图。
第五单元代数式与函数的初步认识教学目标和要求1.借助现实情境了解代数式,进一步理解用字母表示数的意义。
2.能分析具体问题中的简单数量关系,并能用代数式表示;能解释一些简单代数式的实际背景和几何意义。
3.探索简单实例中的数量关系和变化规律,了解常量和变量的意义。
4.经历探索简单实例中数量关系和变化规律,并用代数式表示到文字语言叙述的双向过程。
教材分析本单元教学是在学生认识简单的数量关系,接触过一些字母式子如计算公式、运算规律的基础上安排的。
学生掌握这部分内容,有利于学习方程、比例以及其他代数式知识。
也有利于体验数学表达的简练,发展学生的符号感。
教材内容分两段安排:第一阶段是代数式,主要介绍用字母表示数;第二阶段是在第一阶段的基础上进一步用字母表示数——函数初步认识。
教材力求突出以下几方面:创设丰富的生活环境,突出数量关系,提供丰富的、有吸引力的探索活动和现实生活中的问题难题。
教学重点难点:重点是代数式和函数的初步认识,能够建立方程、不等式、函数等数学模型。
难点是列代数式,区分具体问题中的常量和变量,理解它们之间的函数关系。
学习本章的关键是帮助学生初步建立符号意识,使学生能够理解并且运用符号表示数、数量关系和变化规律,感悟符号的使用是数学表达的重要工具。
学情分析在小学阶段,学生虽然已经初步接触过用字母表示数,但对字母表示数的意义和认识比较肤浅,要完成这个飞跃,必须从大量的实例中体会、领悟。
本章不仅要求学生进一步认识用字母表示数的意义,还要理解字母可以与数一起参与运算,可以用数、字母、运算符号组成的代数式表示具有某种普遍意义的数量关系。
注意事项1.关注学生在探索数量关系中的参与态度、思维水平和抽象能力;2.在学生进行从语言叙述道代数式表示、从代数式表示到语言叙述的活动中,关注学生与他人进行合作与交流的意识;3.在评价学生对常量、变量、函数表达式的掌握程度时,关注他们对问题的理解诶和解决问题时的表现。
教学方法建议1.重视在具体情境中探索数量关系和变化规律的活动,使学生经历符号化的过程;2.鼓励学生对代数式意义进行多方面的解释,使学生不断深化对字母表示数的意义的认识,加强学生对数学的理解;3.鼓励学生积极参与观察、思考、尝试、猜测的数学活动,促使学生主动地、富有个性的学习,不断提高发现问题、分析问题和解决问题的能力;4.重视读、列代数式的教学,发展学生运用数学语言进行表达和交流的能力;5.求代数式的值是由一般到特殊的过程,教学中,应让学生进一步体会到代数式的意义和作用;6.函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的概念之一,教学过程中,要让学生获得函数的感性认识。
青岛版数学七年级上册5.5《函数的初步认识》说课稿一. 教材分析《函数的初步认识》这一节内容,主要让学生了解函数的概念,理解函数的性质,以及会运用函数解决实际问题。
本节课的内容是初中学段数学的重要知识点,也是学生进一步学习高中数学的基础。
教材通过具体的例子,引导学生认识函数,理解函数的定义,以及函数的图像。
二. 学情分析七年级的学生已经掌握了初步的代数知识,具备了一定的逻辑思维能力。
但是对于函数这一概念,学生可能还是比较陌生。
因此,在教学过程中,我将会注重引导学生通过具体的例子,去理解函数的概念,培养学生的抽象思维能力。
三. 说教学目标1.让学生理解函数的概念,知道函数的定义。
2.让学生了解函数的性质,能够通过实例分析函数的性质。
3.培养学生运用函数解决实际问题的能力。
四. 说教学重难点1.重点:让学生理解函数的概念,知道函数的定义。
2.难点:让学生理解函数的性质,能够通过实例分析函数的性质。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法。
同时,利用多媒体教学手段,如PPT等,帮助学生直观地理解函数的概念和性质。
六. 说教学过程1.导入:通过一个实际问题,引入函数的概念。
2.讲解:讲解函数的定义,通过具体的例子,让学生理解函数的概念。
3.分析:分析函数的性质,让学生通过实例理解函数的性质。
4.练习:让学生通过练习题,巩固对函数的理解。
5.总结:总结本节课的主要内容,强调函数的概念和性质。
6.作业:布置作业,让学生进一步巩固函数的知识。
七. 说板书设计板书设计主要包括函数的定义、函数的性质等内容。
通过板书,让学生能够清晰地了解函数的概念和性质。
八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况、练习题的正确率等方面进行。
通过这些评价,了解学生对函数知识的掌握情况,以便进行下一步的教学。
九. 说教学反思在教学过程中,我可能会发现一些问题,如学生对函数概念的理解不够深入,或者对函数性质的掌握不够牢固等。
七年级数学上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数和负数的概念- 绝对值的计算2. 有理数- 有理数的定义- 有理数的加法和减法- 有理数的乘法和除法- 有理数的比较大小- 有理数的混合运算3. 整式与分式- 单项式与多项式的定义- 整式的加法、减法、乘法- 分式的定义和性质- 分式的加减法和乘除法4. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法- 不等式的概念和性质- 一元一次不等式的解法- 简单线性不等式的图形表示5. 函数的初步认识- 函数的定义- 函数的表示方法- 线性函数和常函数的概念 - 函数的简单应用二、几何1. 图形初步- 点、线、面的概念- 直线、射线、线段的性质 - 角的概念和分类- 平行线的性质2. 平面图形- 四边形的定义和性质- 矩形、正方形的性质- 三角形的定义和分类- 三角形面积的计算- 圆的基本性质- 圆的周长和面积的计算3. 空间图形- 简单立体图形的认识- 长方体和立方体的性质 - 棱柱、棱锥的基本概念 - 圆柱、圆锥的基本概念三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制- 平均数、中位数和众数的计算2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件的概率计算四、应用题1. 利用所学知识解决实际问题- 速度、时间和距离问题的解决- 货币、购物问题的解决- 比例和百分比问题的应用- 面积和体积问题的实际应用以上是七年级数学上册的主要知识点总结。
在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和计算方法,通过大量的练习题来巩固和深化理解。
同时,要注意培养解决实际问题的能力,将数学知识应用到日常生活中去。
教师和家长应鼓励学生积极参与课堂讨论,提出问题并尝试独立解决,以培养其数学思维和创新能力。
§5.5函数的初步认识【学习目标】1.初步掌握函数的概念2.能判断两个变量间的关系是否函数关系3.初步形成利用函数的观点认识现实世界的意识和能力重点:函数概念的理解难点:会判定两个变量间的关系是否函数关系【课前延伸】回顾§5.4的4个y关于x的代数式和图5-5,并自学P116“交流与发现”,完成问题1.问题1中,______随______的增大而___ ____。
2.问题2中,______随______的增大而____ ___。
3.问题3中,______随______的增大而____ ___。
4.问题4中,______随______的增大而____ ___。
5.图5-5中,从0时到3时,温度随时间的增大而_______;从3时到15时,______随______的增大而_______;从15时到24时,______随______的增大而_______。
6.在课本P116的问题中,______随______的增大而___ ____。
【探索新知】1.在关系式中,当时,,当时,,变量y随变量x的______而_______(填“增大”或“减小”),变量y的取值是由变量x的取值确定的。
(填“唯一”或“多个”)2.通过观察、计算后完成下面表格200速度V(千米时)时间t (小时)80548501008/3…………时间t(小时)与速度V(千米/小时)之间的关系式是t=_________,变量速度v(千米/小时)的取值是由变量时间t(小时)______确定的。
(填“唯一”或“多个”)3.观察图像,完成下列题目。
下图是一个水池放水时,水池中的剩余水量随时间的变化情况。
1234510080604020t(小时)剩余水量Q(立方米)①由图象观察可知,每小时可放水立方米。
②剩余水量Q(立方米)与时间t(小时)之间的关系式是__________(0≤t≤5),Q随x的______而_______;③当t=2.5时,Q= ,当t=3.2时,Q= ;④变量剩余水量Q(立方米)的取值是由变量时间t(小时)的取值确定的。
数量关系与函数的初步认识数量关系和函数是数学中两个重要的概念,它们在数学和现实生活中都有广泛的应用。
在本文中,我们将初步认识数量关系和函数,并探讨它们之间的关系和特点。
一、数量关系的概念数量关系是用来描述不同物体或事物之间的数量差异或变化规律的关系。
它是数学中的基本概念,常常用来解决实际问题。
在数量关系中,我们可以通过观察和分析来找到数学模型,并用公式或方程来表示。
例如,我们可以通过观察一根弹簧的伸长程度与挂在其上的物体重量之间的关系,发现它们之间存在着线性关系,即重量与伸长程度成正比。
这种关系可以用函数来描述,比如重量W与伸长程度x的关系可以表示为W=kx,其中k是一个常数。
二、函数的概念函数是数量关系的一种特殊形式,它是一种具有明确输入和输出的关系。
在函数中,每个输入值都对应一个唯一的输出值。
我们可以把函数看作是一个黑盒子,输入是自变量,输出是因变量。
一个函数通常用f(x)或y来表示,其中x是自变量,f(x)或y是对应的因变量。
例如,f(x)=2x表示一个函数,它将输入值的2倍作为输出值。
三、函数的特点函数具有以下几个重要特点:1. 定义域:函数的定义域是指自变量的取值范围。
要使函数有意义,输入的值必须属于其定义域。
2. 值域:函数的值域是指函数的所有可能输出值的集合。
函数的值域可能是一个数集或一个区间。
3. 单调性:函数可以是递增的或递减的。
递增函数意味着当自变量增加时,因变量也增加;递减函数则相反。
4. 奇偶性:函数可以是奇函数或偶函数。
奇函数满足f(-x)=-f(x),即关于原点对称;偶函数则满足f(-x)=f(x),即关于y轴对称。
5. 图像特征:通过绘制函数的图像,我们可以了解函数的形状和特征。
例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。
四、数量关系与函数的关系函数是数量关系的一种特殊形式。
数量关系可以通过函数来表示和描述。
而函数的概念和特点可以帮助我们更好地理解和分析数量关系。