《函数》示范课教学设计【数学八年级上册北师大】
- 格式:docx
- 大小:490.64 KB
- 文档页数:9
基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。
学的活动1观看洋葱数学有关函数的数学史。
活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。
举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。
北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。
本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。
本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。
通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。
二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。
但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。
三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。
2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。
四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。
2.难点:函数的概念的理解,函数的性质的推导。
五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。
2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。
3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。
2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。
3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。
4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。
北师大版八年级数学上册:4.1《函数》教案1一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。
本节课的主要内容是让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。
通过本节课的学习,使学生能够理解生活中的一些现象和问题,培养学生的数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了代数的基础知识,对一些数学概念和符号有一定的理解。
但部分学生可能对生活中的实际问题与数学知识的联系还不够明确,对函数的概念和性质的理解可能存在一定的困难。
三. 教学目标1.让学生了解函数的概念,理解函数的性质,掌握函数的表示方法。
2.培养学生运用数学知识解决生活中问题的能力。
3.培养学生合作交流、积极思考的学习习惯。
四. 教学重难点1.函数的概念和性质。
2.函数的表示方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考,培养学生的数学思维能力。
六. 教学准备1.课件、教案。
2.与生活相关的函数实例。
3.小组讨论的准备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、海拔等,引导学生思考这些现象与数学知识的联系,激发学生的学习兴趣。
2.呈现(10分钟)通过课件展示函数的概念和性质,让学生初步了解函数的定义,以及函数的表示方法。
3.操练(10分钟)让学生通过自主学习,理解函数的概念和性质,学会用函数表示一些实际问题。
4.巩固(10分钟)学生分组讨论,分析生活中的实际问题,运用函数的知识解决问题,巩固所学内容。
5.拓展(10分钟)引导学生思考函数在其他领域的应用,如经济学、物理学等,拓宽学生的知识视野。
6.小结(5分钟)对本节课的主要内容进行总结,使学生明确函数的概念、性质和表示方法。
7.家庭作业(5分钟)布置一些有关函数的练习题,巩固所学知识,提高学生的应用能力。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
教学过程中每个环节所用的时间如上所示,供您参考。
八上第四章第一节:《函数》教学设计一、学生起点分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。
二、教学任务分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。
●教材内容本节内容安排了1个学时。
教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。
与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
●教材地位及作用函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。
同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
三、教学目标分析教学目标:●知识与技能目标1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。
●过程与方法目标1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;3.通过对函数概念的学习,培养学生的语言表达能力。
北师大版数学八年级上册1《函数》教学设计2一. 教材分析北师大版数学八年级上册1《函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用的初步认识。
本节课的内容主要包括函数的定义、函数的性质和函数图像等。
通过本节课的学习,学生可以对函数有更深入的了解,为后续学习更复杂的函数知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的函数概念和性质可能较难理解和掌握,需要通过具体例子和实际应用来加深理解。
三. 教学目标1.理解函数的定义,掌握函数的性质。
2.学会用函数的性质解决实际问题。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.函数的定义和性质。
2.函数图像的绘制和分析。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,用实际案例让学生理解函数的性质,小组合作学习法让学生在讨论中加深对知识的理解。
六. 教学准备1.准备相关案例和实际问题。
2.准备函数图像的绘制工具。
3.准备小组讨论的问题和任务。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,如“某商场举行打折活动,商品的原价和折扣价之间是否存在某种关系?”引导学生思考函数的定义和作用。
2.呈现(10分钟)呈现函数的定义和性质,用PPT或板书展示。
同时,用具体案例来说明函数的性质,如“一次函数的图像是一条直线”,“二次函数的图像是一个抛物线”等。
3.操练(10分钟)让学生通过绘制函数图像来加深对函数性质的理解。
可以分组进行,每组选择一个函数,绘制其图像,并分析图像的性质。
4.巩固(10分钟)通过一些练习题来巩固对函数性质的理解。
可以设置一些选择题、填空题或解答题,让学生在解答过程中运用所学知识。
5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如“如何利用函数模型来描述某种现象?”让学生举例说明,并进行讨论。
北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初步接触到函数概念后,进一步深入研究函数性质和图像的重要章节。
本节内容主要包括函数的定义、函数的性质、函数的图像等,是学生理解函数概念、掌握函数解题方法的关键。
二. 学情分析学生在学习本节内容时,已具备一定的数学基础知识和初步的函数概念,但对于函数的深入理解和灵活运用还有待提高。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过自主学习、合作探讨等方式,逐步理解和掌握函数的相关知识。
三. 教学目标1.理解函数的定义,掌握函数的性质和图像。
2.培养学生运用函数解决实际问题的能力。
3.培养学生的数学思维能力和团队协作能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的特点和绘制方法。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数在实际生活中的应用。
2.启发式教学法:引导学生主动思考、探究函数的性质和图像。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作包含函数定义、性质、图像等内容的PPT。
2.教学素材:准备一些与生活相关的函数实例,如温度、身高等。
3.练习题:挑选一些具有代表性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的函数实例,如温度随时间的变化、身高与年龄的关系等,引导学生关注函数在实际生活中的应用。
提问:这些实例中有什么共同特点?从而引出函数的定义。
2.呈现(10分钟)通过PPT展示函数的定义、性质和图像,让学生初步了解函数的基本概念。
同时,教师进行讲解,确保学生能够理解函数的相关概念。
3.操练(10分钟)让学生独立完成一些具有代表性的练习题,检验学生对函数概念的理解。
教师在过程中进行个别辅导,帮助学生解决问题。
4.巩固(10分钟)学生进行小组讨论,让学生分享自己的解题心得,互相学习。
北师大版数学八年级上册1《函数》教学设计3一. 教材分析《函数》是北师大版数学八年级上册的教学内容,本节课主要让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。
通过本节课的学习,使学生能够理解生活中的函数现象,提高解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了代数知识,对变量、方程有一定的认识。
但函数作为一种新的数学概念,对学生来说较为抽象,需要通过实例让学生感受函数的意义,从而更好地理解函数的内涵。
三. 教学目标1.了解函数的概念,知道函数的表示方法。
2.理解函数的性质,能够分析生活中的函数现象。
3.提高学生解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.函数的概念及表示方法。
2.函数的性质的理解与应用。
五. 教学方法采用情境教学法、实例教学法和小组合作学习法。
通过生活实例引入函数概念,让学生在实际问题中感受函数的意义;通过小组讨论,引导学生探索函数的性质,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示生活中的函数现象。
2.实例材料:收集相关的实际问题,用于引入函数概念。
3.学习任务单:设计学习任务单,引导学生探究函数的性质。
七. 教学过程1.导入(5分钟)利用课件展示生活中的函数现象,如温度随时间的变化、物价随时间的变化等,引导学生思考这些现象背后的数学规律。
2.呈现(10分钟)介绍函数的概念,让学生了解函数的定义,并通过实例解释函数的表示方法。
如y=2x+1,x表示自变量,y表示因变量,2和1为常数。
3.操练(10分钟)让学生分组讨论,分析给定的实际问题,尝试用函数表示这些问题。
如一个人骑自行车行驶的路程s与时间t的关系,可以表示为s=10t(假设速度为10km/h)。
4.巩固(10分钟)让学生根据函数的性质,判断给定的实际问题是否为函数。
如一个人身高与年龄的关系,是否为函数?通过讨论,使学生理解函数的内涵。
5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如购物时优惠券的使用、手机话费的计算等。
八年级数学上册4.1函数教学设计(新版北师大版)一. 教材分析函数是八年级数学上册第四单元的内容,本节课的主要内容是让学生初步理解函数的概念,了解函数的表示方法,以及会使用函数的性质解决一些简单问题。
教材通过引入实际问题,引导学生探究函数的定义和表示方法,培养学生的数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,对数学问题有一定的探究能力。
但函数概念抽象,学生理解起来有一定难度,因此需要教师在教学中引导学生逐步理解函数的概念,并通过实际例子让学生体验函数的应用。
三. 教学目标1.了解函数的定义和表示方法,能正确理解函数的概念。
2.学会用函数的性质解决一些简单问题,提高数学解决问题的能力。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.函数的概念和表示方法。
2.函数的性质及应用。
五. 教学方法1.情境教学法:通过引入实际问题,引导学生探究函数的定义和表示方法。
2.启发式教学法:在教学过程中,教师引导学生思考,激发学生的学习兴趣。
3.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学PPT:制作包含函数概念、表示方法和应用实例的PPT。
2.实际问题:准备一些与生活相关的问题,用于引导学生探究函数。
3.练习题:准备一些有关函数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如“某水果店售价为每千克x元,求购买y千克该水果需要支付的总价”,让学生思考这些实际问题与数学函数之间的关系。
2.呈现(15分钟)介绍函数的定义和表示方法。
函数的定义:在某个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一的值与之相对应,那么y就是x的函数。
函数的表示方法有解析式和列表法。
3.操练(15分钟)让学生分组讨论,运用函数的性质解决一些简单问题。
如:“已知函数y=2x+1,求当x=3时,y的值是多少?”4.巩固(10分钟)让学生独立完成一些有关函数的练习题,巩固所学知识。
§4.1函数第1节《函数》教学设计一、学情分析认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。
活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。
二、教学目标:知识与技能目标:(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。
(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。
(3)会对一个具体实例进行概括抽象成为函数问题。
过程与方法目标:(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。
(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感态度与价值观目标:(1)经历函数概念的抽象概括过程,体会函数的模型思想。
(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点和难点教学重点:(1)掌握函数概念。
(2)会判断两个变量之间的关系是否可以看作函数。
(3)能把实际问题抽象概括成函数问题。
教学难点:(1)理解函数的概念。
(2)能把实际问题抽象概括成函数问题。
三、教学过程设计:(一)创设问题情境,导入新课生活中充满了许许多多变化的量,如步行时所走的路程随时间的变化而变化,身高随年龄的变化而变化等等,你们能举出我们生活中变化的量么?在上面的几个情景中各个变量之间有着密切的联系,数学上常用函数来刻画变量之间的关系,那么函数是什么。
要理解函数的概念,我们先感受下函数关系(板书课题:§4.1函数)(二)共同探究,构建模型问题一:游乐园中的摩天轮(如左下图)(1)如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的,这种变化有规律么。
北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节主要介绍了函数的概念、性质和简单的函数图像。
函数是初中数学的重要内容,也是高中数学的基础。
通过本节的学习,学生能够理解函数的基本概念,了解函数的性质和图像,为后续学习更复杂的函数知识打下基础。
二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于函数这一概念,学生可能比较陌生,难以理解函数的的本质。
因此,在教学过程中,需要引导学生从实际问题中抽象出函数的概念,并通过大量的例子让学生感受函数的性质和图像。
三. 教学目标1.了解函数的概念,能够说出函数的定义。
2.了解函数的性质,能够判断一个函数的性质。
3.能够画出一些简单函数的图像,了解函数图像的特点。
4.能够运用函数解决实际问题。
四. 教学重难点1.函数的概念和性质。
2.函数图像的画法和特点。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数的应用。
2.实例教学法:通过大量的例子让学生理解函数的性质和图像。
3.小组合作学习:让学生在小组内讨论和探究函数的问题,培养学生的合作能力。
六. 教学准备1.PPT课件:制作相关的PPT课件,展示函数的定义、性质和图像。
2.实例材料:准备一些实际的例子,让学生分析和探究。
3.练习题:准备一些练习题,让学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如电梯的运行、温度变化等,引导学生思考这些问题背后的数学模型。
通过学生的思考和讨论,引出函数的概念。
2.呈现(10分钟)用PPT课件呈现函数的定义,让学生了解函数的基本概念。
然后,用PPT课件展示一些简单函数的图像,让学生观察和分析函数图像的特点。
3.操练(10分钟)让学生分组讨论和探究,分析给定的实际问题中的函数关系。
每组选择一个实际问题,分析其中的函数关系,并画出函数的图像。
北师大版八年级数学上册:4.1《函数》教学设计2一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初中函数概念的基础上,进一步深入研究函数性质和图像的重要内容。
本节课的内容主要包括函数的概念、函数的性质和函数的图像。
函数是数学中的重要概念,它在现实生活中有着广泛的应用。
通过学习本节课的内容,学生能够更好地理解函数的本质,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的基础知识,对函数的概念和图像有一定的了解。
但学生在理解函数的性质和运用函数解决实际问题方面还存在一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,采取适当的教学方法,引导学生深入理解函数的性质,提高解决实际问题的能力。
三. 教学目标1.理解函数的概念,掌握函数的性质。
2.能够运用函数解决实际问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.函数的概念和性质。
2.运用函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生通过观察、思考、讨论,自主探索函数的性质。
3.案例教学法:通过典型例题,引导学生运用函数解决实际问题。
六. 教学准备1.教学课件:制作生动有趣的课件,帮助学生直观地理解函数的性质。
2.教学素材:收集相关的实际问题,作为课堂练习和拓展的内容。
3.板书设计:合理安排板书内容,突出函数的性质。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如气温变化、物体运动等,引导学生回顾已学的函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师引导学生观察、思考、讨论,探索函数的性质。
通过教师的引导,学生能够自主得出函数的性质。
3.操练(10分钟)教师出示典型例题,引导学生运用函数的性质解决问题。
在解决问题的过程中,教师要注意引导学生运用函数的性质,提高学生的解题能力。
北师大版数学八年级上册1《函数》教学设计1一. 教材分析《函数》是北师大版数学八年级上册的教学内容,本节课主要介绍函数的概念、性质及简单的函数图像。
教材通过生活中的实例引入函数的概念,让学生理解函数是一种数学模型,用来描述两个变量之间的关系。
教材还介绍了函数的性质,如单调性、奇偶性等,并通过实例让学生了解函数图像的特点。
二. 学情分析八年级的学生已经学习了代数和几何的基本知识,具备一定的逻辑思维能力和空间想象能力。
但对于函数这一概念,学生可能较为陌生,难以理解函数的本质和应用。
因此,在教学过程中,需要通过生活实例和实际操作,让学生感受函数的意义,并培养他们的抽象思维能力。
三. 教学目标1.理解函数的概念,知道函数的定义要素;2.了解函数的性质,如单调性、奇偶性等;3.能够观察和分析实际问题中的函数关系,并能用函数模型进行描述;4.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.函数的概念及其定义要素;2.函数的性质及其应用;3.利用函数模型解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数的意义;2.直观教学法:利用图形和实物展示函数的性质,增强学生的空间想象能力;3.引导发现法:教师引导学生发现函数的性质,培养学生的抽象思维能力;4.实践操作法:让学生动手绘制函数图像,提高他们的实际操作能力。
六. 教学准备1.教学课件:制作函数概念、性质及实例的课件;2.教学素材:收集生活中的函数实例;3.练习题:准备巩固函数概念和性质的练习题;4.板书设计:设计本节课的重点内容和关键步骤。
七. 教学过程1.导入(5分钟)利用生活实例引入函数的概念,如气温与时间的关系,让学生感受函数的意义。
2.呈现(10分钟)展示教材中的函数实例,引导学生分析函数的定义要素,如自变量、因变量和函数关系。
3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数等,观察和分析函数的性质。
教学目标:1.了解函数的定义及其表示方式。
2.掌握函数的性质和基本例子。
3.能够根据给定的函数进行问题求解。
4.培养学生的思维能力和问题解决能力。
教学重点:1.函数的定义及其表示方式。
2.函数性质及其应用。
3.函数问题解决方法的培养。
教学难点:1.函数定义的理解和运用。
2.学生问题解决能力的提升。
教学准备:1.教材《数学八年级上册》2.讲义、教学演示软件3.学生练习册教学过程:一、导入(10分钟)1.提问:你们能说出一些函数的例子吗?2.展示一个简单的函数图像,引导学生猜测其函数表达式。
3.通过导入的方式激发学生的学习兴趣,并引入今天的主题。
二、概念讲解(20分钟)1.呈现《数学八年级上册》中“函数”的概念。
2.解读教材对函数的定义,引导学生探究函数的基本性质。
3.教师讲解函数的表示方法,包括映射表示法、解析表示法、图像表示法等。
三、函数性质(25分钟)1.引导学生通过讨论函数的图像和表达式,了解函数的增减性和奇偶性。
2.教师通过多个例子进行解析,讲解函数的单调性和有界性。
3.引导学生发现函数的最值和极值,并解释其意义和用途。
四、函数的应用(20分钟)1.发放练习册,让学生完成一些关于函数性质的练习。
2.引导学生通过解决实际问题来应用函数,如购物折扣、等速直线运动等。
3.教师与学生共同讨论解决方法和思路,培养学生的问题解决能力。
五、小结与拓展(15分钟)1.教师小结今天的教学内容,强调函数的定义和性质。
2.提出几个拓展问题,引导学生思考函数的更多应用场景。
3.教师和学生一起回顾本节课的重难点问题,并解答学生的疑惑。
六、作业布置(5分钟)1.布置课后练习题,巩固学生对函数概念和性质的理解。
2.提醒学生预习下节课的内容,准备相关材料。
教学反思:本节课通过导入、概念讲解、性质讨论、应用练习等多种教学手段,帮助学生全面理解函数的概念和基本性质。
通过引导学生解决实际问题,培养了学生的问题解决能力。
同时,通过小组合作和课堂讨论,激发了学生的主动性和参与度。
数学八年级上北师大版4.1《函数》教学设计一、教材分析《函数》是义务教育课程标准北师大版实验教科书八年级上册第四章第1节,共1课时。
函数是初中数学非常重要的内容,是应用非常广泛的数学模型。
它是在七年级学习了“变量之间的关系”的基础上,对自变量、因变量的进一步深入与拓展;同时,函数概念的学习又为后面学习一次函数、反比例函数、二次函数等知识奠定了基础,是进一步研究函数相关知识的工具,起着承前启后的作用。
二、学情分析学生在七年级上学期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下学期又学习了“变量之间的关系”,通过自变量、因变量的学习,积累了研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。
另外,八年级学生的动手操作能力、观察分析能力、归纳总结能力较七年级有了一定程度的提高,对于一些问题,学生已经有自己的见解,并能较准确的表达自己的见解,这些都为本节课的学习创造了良好的条件。
三、教学目标知识与技能目标:1、理解函数的概念,能判断两个变量间的关系是否是函数关系;2、了解函数的三种表示方法;过程与方法目标: 1、通过对函数概念的学习,初步形成利用函数的观点认识现实世界的意识和能力。
2、在函数概念的学习过程中,体验数形结合、从特殊到一般的数学思想方法。
3、通过函数概念的叙述,培养学生抽象概括能力,语言表达能力。
情感态度价值观:1、通过参与函数概念的探索活动,让学生体验成功的快感,增强学生学习数学的兴趣与信心。
2、通过自主探究,合作交流等活动,使学生养成独立思考的好习惯,同时培养学生的团队合作意识。
四、教学重难点教学重点:1.掌握函数的概念,以及函数的三种表示方法;2.会判断两个变量之间是否是函数关系。
教学难点:1.函数概念的理解;2.把实际问题抽象概括为函数问题。
五、教法与学法1、教法分析新教学理念主张,学生是学习的主体,教师是学习的组织者、引导者。
北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。
函数是数学中的一个重要概念,也是初中数学的核心内容之一。
通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。
二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。
但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。
因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。
三. 教学目标1.理解函数的概念,掌握函数的表示方法。
2.能够判断两个相关联的变量之间的关系是否为函数。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。
2.函数的表示方法。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。
2.实例教学法:通过具体的实例,使学生理解函数的表示方法。
3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。
2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。
”让学生思考并回答问题,引出函数的概念。
2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。
通过具体的实例,让学生理解函数的表示方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。
第四章一次函数
1 函数
一、教学目标
1.经历从具体实例中抽象出函数概念的过程,进一步感悟抽象的数学思想,积累抽象概括的活动经验.
2.初步理解函数的概念,能判断两个变量间的关系是不是函数关系,初步形成利用函数的观点认识现实世界的意识.
3.掌握函数的三种表示方法,会根据两个变量之间的关系式求函数值.
4.会确定简单实际问题中函数关系式,并能确定自变量的取值范围.
二、教学重难点
重点:掌握函数的概念以及表示方法.
难点:会求函数的值,并确定自变量的取值范围.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
【探究】
教师活动:你坐过摩天轮吗?想一想,如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?
预设答案:由低变高,再由高变低.
右图反映了摩天轮上的一点的高度h(m)与旋转时间t(min) 之间的关系.
请根据图象填表:
预设答案:3;14;36;47;36;14...
旋转的时间变化时,摩天轮上一点的高度也___________.
旋转的时间确定时,摩天轮上一点的高度也___________.
预设答案:随着变化;随着确定.
教师活动:对于给定的时间t,相应的高度h随之确定.
【做一做】
问题一:罐头盒等圆柱形的物体常常如下图那样堆放.随着层数的增加,物体的总数是如何变化
的?
填写下表:
预设答案:1;3;6;10;15
追问:其中对于给定的每一个层数n,物体总数y的值确定吗?
教师活动:确定!只要给定层数,就能求出物体总数.
问题二:一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.
(1)当t分别等于-43℃,-27℃,0℃,18℃时,相应的热力学温度T是多少?
(2)给定一个大于-273℃的t值,你都能求出相应的T值吗?
预设答案:
解(1):当t为-43℃时,T=-43+273=230(K);
当t为-27℃时,T=-27+273=246(K);
当t为0℃时,T=0+273=273(K);
当t为18℃时,T=18+273=291(K);(2):能!代入关系式即可.
教师活动:有且只有唯一一个T值.
追问:上面的三个问题,有什么共同点?
预设答案:
共同特点:
1.都有两个变量.
2.给定其中某一个变量的值,相应地就确定了另一个变量的值.
【归纳总结】
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.
教师活动:注意:函数不是数,它是指某一变化过程中两个变量之间的关系.
【做一做】
下面哪个量是自变量?哪个量是自变量的函数?
(1) S = 60t;
(2) y=10-x2;
(3) S=πr2.
预设答案:
(1) t是自变量,S是自变量的函数.
(2) x是自变量,y是自变量的函数.
(3) r是自变量,S是自变量的函数.
下列各式中,x是自变量,请判断y是不是x的函数?
(1)y=4x;(2) y=x2;
(3) y=x3;(4) |y|=x.
预设答案:(1) 是(2) 是(3) 是(4) 不是
教师活动:对于x的每一个值,y总有唯一的值与它对应,y才是x的函数.
【思考】
在摩天轮旋转中,时间t 可以看成是高度h 的函数吗?为什么?
教师活动:当高度h 确定时,对应的时间t 有多个,所以t 不是h 的函数. 【探究】
表示函数的方法一般有哪些呢?
表示函数的一般方法有:图象法、列表法和关系式法.
教师活动:三种函数表示法可以互相转化. 【做一做】
将“问题一”中的列表法转化为关系式法.
预设答案:1(1)2
y n n =+
问题:上述的三个问题中,要使函数有意义,自变量能取哪些值?
预设答案:自变量t 的取值范围:t ≥0.
预设答案:自变量n的取值范围:n取正整数.
预设答案:t≥-273.
对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.
T(K)与t(℃)的函数关系:T=t+273,T≥0.当t=1时,T=1+273=274(K),那么,274就是当t=1时的函数值.
教师活动:即:如果y是x的函数,当x=a时,y=b,那么b叫做当x=a时的函数值.
C. x≥2
D.x≥2且x≠5
(2)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y与x的关系式为( ) A.y=5x+10 B. y=5x-10
C.y=10x+5
D. y=10x-5
答案:D A.
2.设路程为s,时间为t,速度为v,当v=50时,路程和时间的关系式为,这个关系式中,是变量,是
的函数.
3.表格列出了一项实验的统计数据,表示小球从高度x(单位:m)落下时弹跳高度y(单位:m)与下落高的关系,据表可以写出的一个关系式是.
答案:
2.s=50t;t和s;s;t.
3.y=0.5x
4.已知矩形周长为18,其中一条边长为x,设另一边长为y.
(1)写出y与x的函数关系式;
(2)求自变量x的取值范围.
解:(1)函数关系式为:y=18-2x.
(2)由18-2x>0 且x>0
得x<9,且x>0;
所以自变量的取值范围是0<x<9.
思维导图的形式呈现本节课的主要内容:。