固体物理第一章 9 小结
- 格式:ppt
- 大小:340.50 KB
- 文档页数:17
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
1.简单立方(sc)配位数6,惯用元胞包含格点数1惯用元胞包含格原子数1,2面心立方(fcc)配位数12,惯用元胞包含格点数4,用元胞包含格原子数4,3.体心立方(bcc)配位数8,惯用元胞包含格点数2,用元胞包含格原子数2,4金刚石结构惯用元胞包含格点数4,元内原子数2(种元素)惯用元胞包含原子数8,配位数=4,5闪锌矿结构(立方硫化锌结构)B格子是fcc,惯用元胞包含格点数4惯用元胞包含原子数8 配位数=4,6. 氯化铯(CsCl)结构B格子是sc,惯用元胞包含格点数1用元胞包含原子数2配位数8,7 NaCl结构B格子是fcc,惯用元胞包含格点数4惯用元胞包含原子数8配位数6,8 六方密排结构(hcp) 基元内原子数2,惯用元胞体积2*3,配位数12。
晶体的电阻来源于广义缺陷与Bloch电子的作用,即声子、杂质、缺陷、边界对载流子的散射,非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导。
从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制答:⑴在金属能带中,价带与导带迭合,价带中存在空能级或者价带全满但导带中有电子,故电子易迁移进入较高能量状态的空能级中,金属具有优异的导电性⑵在绝缘体的能带中,其价带全部填满,而导带全部为空能级,在价带与导带之间存在很宽的禁带(>3.0eV),因而电子难以由价带跃迁到导带中,绝缘体的导电性很差⑶半导体的能带结构与绝缘体相似,但其禁带较窄(<3.0eV),因而在外电场激发下(如热激发),电子可由价带跃进导带中而导电,如果在禁带中靠近导带(或价带)的位置引入附加能级(施主或受主)将显著提高半导体的导电性.经典的自由电子理论的要点,用其解释金属的电性能答:要点:金属晶体就是靠自由价电子和金属离子所形成的点阵间的相互作用而结合在一起的,这种相互作用称为金属键.⑴金属中存在大量可自由运动的电子,其行为类似理想气体⑵电子气体除与离子实碰撞瞬间外,其他时间可认为是自由的⑶电子←→电子之间的相互碰撞(作用)忽略不计⑷电子气体通过与离子实的碰撞而达到热平衡,电子运动速度分布服从M—B经典分布.在金属中的自由价电子的数目是较多的且基本上不随温度而变,所以当温度升高的时候,金属电导率的变化主要取决去电子运动的速度.因为晶格中的原子和离子不是静止的,它们在晶格的格点上作一定的振动,且随温度升高这种振动会加剧,证实这种振动对电子的流动起着阻碍作用,温度升高,阻碍作用加大,电子迁移率下降,电导率自然也下降了长光学支格波与长声学支格波本质上有何差异? 答:长光学支格波的特征是每个元胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式,长声学支格波的特征是元胞内的不同原子没有相对位移,元胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数,任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波从导电率的角度简述绝缘体,半导体,导体的导电或绝缘机制答:⑴从电导率角度讲,由于金属的可自由移动电子较多,所以电导率很大,并且电导率随着温度的升高而降低.⑵从电导率角度讲,由于绝缘体的可自由移动电子很少,所以电导率很小,并且电导率随着温度的升高而升高.简述离子晶体中缺陷对电导率有何影响? 答:由于离子晶体是正负离子在库仑力的作用下结合而成的,因而使离子晶体中点缺陷带有一定的电荷,这就引起离子晶体的点缺陷具有一般点缺陷没有的特性,理想的离子晶体是典型的绝缘体,满价带与空带之间有很宽的禁带,热激发几乎不可能把电子由满价带激发到空带上去,但实际上离子晶体都有一定的导电性,其电阻明显地依赖于温度和晶体的纯度.因为温度升高和掺杂都可能在晶体中产生缺陷,所以可以断定离子晶体的导电性与缺陷有关.从能带理论可以这样理解离子晶体的导电性:离子晶体中带点的点缺陷可以是束缚电子或空穴,形成一种不同于布洛赫的局域态.这种局域态的能级处于满带和空带的能隙中,且离空带的带地或者满带的带顶较近,从而可能通过热激发向空带提供电子或接受满带电子,使离子晶体表现出类似于半导体的导电特性.为什么组成晶体的粒子(分子,原子或离子)间的互作用力除吸引力还要排斥力?排斥力的来源是什么?答:电子云重叠——泡利不相容原理排斥力的来源:相邻的原子靠的很近,以至于它们内层闭合壳层的电子云发生重叠时,相邻的原子间使产生巨大排斥力,也就是说,原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠。
固体物理各章节重点总结第一章1、晶体的共性:长程有序、自限性、各向异性2、长程有序:晶体中的原子都是按照一定规则排列的,这种至少在微米数量级范围内的有序排列,称为长程有序。
3、自限性:晶体具有自发地形成封闭几何多面体的特性。
4、原子之间的结合遵从能量最小原理5、一个原子周围最近邻的原子数,称为该晶体的配位数,用来表征原子排列的紧密程度,最紧密的堆积称密堆积6、布喇菲提出了空间点阵学说:晶体内部结构可以看成是由一些相同的点子在空间做规则的周期性的无线分布。
这一学说是对实际晶体结构的一个数学抽象,它只反映出晶体结构的周期性。
人们把这些点子的总体称为布喇菲点阵7、沿三个不同方向通过点阵中的结点作平行的直线,把结点包括无遗,点阵便构成一个三维网格。
这种三维格子称为晶格,又称为布喇菲格子,结点又称点阵。
8、某一方向上两相邻结点的距离为该方向上的周期,以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元,体积最小的重复单元,称为原胞或固体物理学原胞,它能反映晶格的周期性。
9、为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心。
这种重复单元称作晶胞,惯用晶胞或布喇菲原胞10、简立方:a1=a,a2=b,a3=c11、体心立方:a1=0.5(-a+b+c)|a2=0.5(a-b+c)|a3=0.5(a+b-c)12、面心里放:a1=0.5(b+c)|a2=0.5(a+c)|a3=0.5(a+b)|13、氯化铯结构为简立方结构14、氯化钠结构为面心立方结构15、金刚石结构为面心立方结构16、所欲格点都分布在相互平行的一平面族上,每一平面都有格点分布,称这样的平面为晶面17、若ij=1,2…则可用正格基失来构造倒格基失18、将正格基失在空间平移可构成正格子,相应地我们把倒格基失平移形成的格子叫做倒格子19、正格原胞体积与倒格原胞体积之积等于(2π)3;正格子与倒格子互为多方的倒格子;倒格失K h=h1b1+h2b2+h3b3与正格子晶面族正交;倒格失的模K h与晶面族(h1h2h3)的面间距成反比20、晶体有230种对称类型,称其为空间群;若不包括平移,有32种宏观对称类型,称其为点群21、晶体的宏观对称操作一共有八种基本对称操作P1922、计算题P25P34第二章1、五种基本结合类型:共价结合、离子结合、金属结合、分子结合、氢键结合2、体积弹性模量3、计算题P53P63第三章1、玻恩和卡门提出了一个遐想的边界条件,即所谓的周期性边界条件。
第一章晶体结构1.晶格实例面心立方(fcc)配位数12 格点等价格点数4 致密度原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)简单立方(SC)配位数6 格点等价格点数1 致密度CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3??氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等体心立方(bcc)配位数8 格点等价格点数2 致密度原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等金刚石结构最近邻原子数4 次近邻原子数12 致密度晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构基本概念晶体:1. 化学性质相同 2. 几何环境相同基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞 维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅= 简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k⎧=⎪=⎨⎪=⎩体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪ ⎪ ⎪⎝⎭,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-⎛⎫ ⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
第一章 总结1 晶格的周期性晶体的特征是内在结构的长程有序。
基元是晶体的周期性结构单元,布拉伐格子反映晶格的周期性。
晶体结构=基元+布拉伐格子。
原胞是一个平行六面体,它只含一个布拉菲格点。
原胞中的原子排布给出基元,而其三个棱反映了周期性。
原胞只含一个原子的是简单格子,否则是复式格子。
晶胞(单胞)也是一个平行六面体,它不但反映周期性,也反映晶体的对称性,它不一定是晶体的最小重复单元。
常见晶格结构的布拉菲格子、原胞及晶胞。
简单立方、面心立方、体心立方、六角密排、金刚石、NaCl 、CsCl 、ZnS 、等等 2 晶向指数和晶面指数晶向指数[l 1l 2l 3]是标志晶列方向的;晶面指数(h 1h 2h 3)是标志晶面方位的。
以晶胞基矢a,b,c 为坐标系给出的晶面指数(hkl )称为密勒指数。
这些指数都分别是互质整数,指数简单的晶列或晶面是最重要的。
3 倒格子与布里渊区定义:对于一个特定晶格,根据原胞基矢a 1,a 2,a 3,可以定义三个新的矢量 1232()π=⨯Ωb a a ,2312()π=⨯Ωb a a ,3122()π=⨯Ωb a a ,其中123()Ω=∙⨯a a a我们称b 1,b 2,b 3为倒矢量。
以b 1,b 2,b 3为基矢进行平移可以得到一个周期点阵,称为倒易点阵,或倒格子。
因此,b 1,b 2,b 3也叫做倒格子基矢。
性质:正格子基矢与倒格子基矢之间满足2,i=j ij 0 , i j 2={i j ππδ≠∙=a b倒格子原胞体积与正格子原胞体积互为倒数。
正格矢与倒格矢的点积为2π的整数倍。
以晶面族晶面指数为系数构成的倒格矢恰为晶面族的公共法线方向。
晶面族的面间距为2||h h d π=G 布里渊区:倒格子空间某格点与近邻格点连线的垂直平分面所围成的区域。
所有布里渊区的大小相同每个布里渊区只包含一个格点。
4. 晶体的对称性晶体的对称性是指经过某种操作之后晶体自身重合(晶格整体不变)的性质,这种操作就是对称操作,对称操作数目多的晶体称为对称性高。
第一章晶体结构1.晶格实例面心立方(fcc)配位数12 格点等价格点数4 致密度原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+vvvv vvv vv原胞体积3123()/4Ωa a a a=⋅⨯=v v vNaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)简单立方(SC)配位数6 格点等价格点数1 致密度CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等体心立方(bcc)配位数8 格点等价格点数2 致密度原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-vv vvvv vvvv vv原胞体积:3123()/2Ωa a a a=⋅⨯=v v v体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等金刚石结构最近邻原子数4 次近邻原子数12 致密度晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构基本概念晶体:1. 化学性质相同 2. 几何环境相同基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++v v v v晶体结构 = 布拉维格子+基元原胞:由基矢1a v 、2a v 、3a v确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞 维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=v v简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩v v v vv v倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k⎧=⎪=⎨⎪=⎩v v v v v v体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩v v v v v v v v v v v v 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩v v v v v v v v v倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++v v v vv v v 其中(h1 h2 h3)是米勒指数,h G v垂直于米勒指数,其第一布里渊区是一个正十二面体面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩vv v v v v v v v 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩v v v v v v v v v v v v 第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪ ⎪ ⎪⎝⎭,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-⎛⎫ ⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。
第一章 晶体的结构一、本章内容1、晶体的共性 ( crystal characters )2、晶格及其平移对称性(lattice and translation symmetry )3、晶列和晶面(crystal array and plane )4、晶体的宏观对称性(crystal symmetry )二、本章要求1、掌握晶体的特征。
晶格周期性的描述方法:基元、布拉菲格子、原胞、基矢的概念。
简单格子与复式格子,原胞、晶胞的概念与选取。
常见晶格结构及其代表晶体。
2、掌握晶列与晶面,晶向指数与晶面指数(密勒指数)的含义与确定方法。
3、熟悉晶体的对称操作、对称素的概念,晶体点群的基本知识。
七大晶系与十四种布拉菲格子。
三、本章知识框图s bcc fcc ⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义:内部质点在三维空间呈周期性重复排列的固体长程有序性自限性和晶面角守恒定律晶体的共性各向异性固定熔点晶格定义:晶体中原子排列的具体形式简立方结构(c )体心立方结构()(Li,Na,K,Rb,Cs,Fe )六角密排结构(hcp )(Be,Mg,Zn,Cd )密堆积结构面心立方结构()(Cu,Ag,Au,Al )常见的晶体结构金刚石结构(Ge,Si )NaCl 晶体晶体的结构C =ηη⎧⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎪⎪⎩结构sCl 结构闪锌矿结构钙钛矿结构一个原子的周围最近邻的原子数配位数:配位数反映原子排列的紧密程度,粒子排列越紧密,配位数越大描述晶体紧密程度的物理量致密度,或堆积因子是指晶胞中所有原子的体积与晶胞体积之比;致密度:晶胞中原子的体积之和公式表示:晶胞体积在整体范围单晶体分类⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎧⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎩⎩内原子排列都是规则的晶带:在晶体中有一些晶面的交线(晶棱)互相平行,这些晶面称为一个晶带带轴:相互平行的晶棱的共同方向称为带轴多晶体:由许多单晶体构成,在个晶粒范围内,原子排列是有序的点阵:晶体的内部结构,可以概括为有一些相同的化学质点在空间有规律地作周期性的无限分布。