固体物理(黄昆)第一章
- 格式:ppt
- 大小:6.68 MB
- 文档页数:61
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
第一章习题参考解答解答:设立方晶格的边长为a,一个晶胞中的原子数为n,原子球半径为R,晶胞体积为V,则致密度(或叫填充率)K为:V Rn K3 34π•= ch1.1 题略3343===0.52(2)6R K R ππ(1) 简单立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R ,体积为(2R)3,所以VR n K 334π•=(2)体心立方晶胞内有2个原子,n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以ππ83)34(342,3433=⨯=R R K R =0.68ππ83)34(342,3433=⨯==R R K R a(3)面心立方晶胞内有4个原子,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a ,ππ62)24(34433=⨯=R RK =0.74,24R a =(4)六角密排原胞内中含2个原子,正四面体四个顶点处的原子球相切,边长为a ,六角柱高h =0.74ππ62322]321)2[(34223=•⨯⨯⨯=a R R K hs 斜边2R=a[(2R)2-[(2Rsin60)х2/3]2=(h/2)2底边竖直边ππ16383433=⨯=a R K =0.34(5)金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线1/4长,体对角线为,38a R =证明1:设六角层内最近邻原子间距为a ,相邻两层间的最近邻为d ,则633.13/8,])2()3[(,])2()3[(21222122≈=+==+=a c c a a a d c a d 由此解出此时有构,时构成理想的密堆积结当ch1.2 题略a d证明2:设六角层内最近邻原子间距为a,相邻两层间的最近邻为d,则a dch1.3 题略解:对于体心立方,原胞基矢为:对于体心立方原胞体积为:1.3)(21k j a a +=)(22i k a a +=)(23j i a a +=对于面心立方,原胞基矢为:根据倒格子基矢定义,并将体心原胞基矢代入计算之,可得:将计算所得到的倒格子基矢与面心立方原胞基矢相同,可知体心立方的倒格子是面心立方。
第一章晶体结构1.晶格实例面心立方(fcc)配位数12 格点等价格点数4 致密度原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+vvvv vvv vv原胞体积3123()/4Ωa a a a=⋅⨯=v v vNaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)简单立方(SC)配位数6 格点等价格点数1 致密度CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等体心立方(bcc)配位数8 格点等价格点数2 致密度原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-vv vvvv vvvv vv原胞体积:3123()/2Ωa a a a=⋅⨯=v v v体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等金刚石结构最近邻原子数4 次近邻原子数12 致密度晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构基本概念晶体:1. 化学性质相同 2. 几何环境相同基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++v v v v晶体结构 = 布拉维格子+基元原胞:由基矢1a v 、2a v 、3a v确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞 维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=v v简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩v v v vv v倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k⎧=⎪=⎨⎪=⎩v v v v v v体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩v v v v v v v v v v v v 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩v v v v v v v v v倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++v v v vv v v 其中(h1 h2 h3)是米勒指数,h G v垂直于米勒指数,其第一布里渊区是一个正十二面体面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩vv v v v v v v v 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩v v v v v v v v v v v v 第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪ ⎪ ⎪⎝⎭,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-⎛⎫ ⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。
§1.5 晶体的宏观对称性晶体在几何外形上表现出明显的对称性,同时这些对称性性质也在物理性质上得以体现。
—— 介电常数可以表示为一个二阶张量:),,,(z y x =βαεαβ—— 电位移分量∑=ββαβαεE D可以证明对于立方对称的晶体:αβαβδεε0=——对角张量所以:E D KK 0ε=—— 介电常数可以看作一个简单的标量。
在六角对称的晶体中,如果将坐标轴选取在六角轴和垂直于六角轴的平面内,介电常数具有如下形式: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⊥⊥εεε000000//对于平行轴(六角轴)的分量://E //////E D ε=对于垂直于轴(垂直于六角轴的平面)的分量:⊥E ⊥⊥⊥=E D ε正是由于六角晶体的各向异性,而具有光的折射现象。
而立方晶体的光学性质则是各向同性的。
原子的周期性排列形成晶格,不同的晶格表现出不同的宏观对称性,怎样描述晶体的宏观对称性? 概括晶体宏观对称性的系统方法就是考察晶体在正交变换的不变性。
在三维情况下,正交变换表示为:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛→⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛z y x a a a a a a a a a z y x z y x 331313232212131211'''—— 矩阵是正交矩阵。
3,2,1,},{=j i a ij —— 如图XCH001_062所示,绕z 轴转θ角的正交矩阵: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−1000cos sin 0sin cos θθθθ—— 中心反演的正交矩阵:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−100010001—— 一个变换为空间转动,矩阵行列式等于+1; —— 变换为空间转动加中心反演,矩阵行列式等于-1。
一个物体在某一个正交变换下保持不变,称之为物体的一个对称操作,物体的对称操作越多,其对称性越高。
1 立方体的对称操作1) 绕三个立方轴转动:23,,2πππ,共有9个对称操作;如图XCH001_026_01所示。
固体物理电子教案黄昆第一章:引言1.1 固体物理的基本概念介绍固体的定义和特点讨论固体的分类和结构1.2 固体物理的发展历程回顾固体物理的发展简史介绍固体物理的重要科学家和贡献1.3 固体物理的研究方法介绍固体物理的研究方法和手段讨论实验技术和理论模型第二章:晶体结构2.1 晶体的基本概念介绍晶体的定义和特点讨论晶体的分类和空间群2.2 晶体的点阵结构介绍点阵的定义和类型讨论晶体的点阵参数和坐标描述2.3 晶体的空间结构介绍晶体的空间结构类型讨论晶体的空间群和空间点阵的对应关系第三章:固体物理的电子结构3.1 电子的基本概念介绍电子的定义和性质讨论电子的亚层和轨道3.2 电子的能级和态密度介绍电子能级的概念和计算方法讨论态密度和能带结构3.3 电子的输运性质介绍电子输运的基本概念讨论电子输运的微观机制和宏观表现第四章:固体物理的能带理论4.1 能带理论的基本概念介绍能带理论的定义和意义讨论能带结构的类型和特征4.2 紧束缚近似和自由电子近似介绍紧束缚近似和自由电子近似的方法和应用讨论紧束缚近似和自由电子近似的结果和限制4.3 能带结构的计算和分析介绍能带结构的计算方法和技术讨论能带结构的结果和分析方法第五章:固体物理的实验技术5.1 实验技术的基本概念介绍固体物理实验技术的方法和手段讨论实验技术的原理和应用5.2 X射线衍射技术介绍X射线衍射技术的原理和应用讨论X射线衍射技术的实验操作和数据处理5.3 电子显微技术介绍电子显微技术的原理和应用讨论电子显微技术的实验操作和图像分析第六章:固体物理的电子光谱6.1 电子光谱的基本概念介绍电子光谱的定义和分类讨论电子光谱的实验测量和理论分析6.2 光电子能谱(PES)介绍光电子能谱的原理和应用讨论光电子能谱的实验操作和数据解析6.3 吸收光谱和发射光谱介绍吸收光谱和发射光谱的原理和特点讨论吸收光谱和发射光谱的应用和分析方法第七章:固体物理的电子性质7.1 电子迁移性和导电性介绍电子迁移性和导电性的定义和测量讨论电子迁移性和导电性的影响因素和机制7.2 电子的散射和碰撞介绍电子散射和碰撞的概念和类型讨论电子散射和碰撞对电子输运性质的影响7.3 电子的关联和相互作用介绍电子关联和相互作用的的概念和机制讨论电子关联和相互作用对固体物理性质的影响第八章:固体物理的半导体材料8.1 半导体的基本概念介绍半导体的定义和特点讨论半导体的分类和制备方法8.2 半导体的能带结构介绍半导体能带结构的类型和特征讨论半导体的导电性质和应用8.3 半导体器件和集成电路介绍半导体器件和集成电路的基本原理和结构讨论半导体器件和集成电路的应用和发展趋势第九章:固体物理的超导材料9.1 超导体的基本概念介绍超导体的定义和特点讨论超导体的分类和制备方法9.2 超导体的能带结构和电子配对介绍超导体的能带结构和电子配对机制讨论超导体的临界温度和临界磁场9.3 超导体的应用和前景介绍超导体的应用领域和实例讨论超导体的前景和挑战第十章:固体物理的新材料探索10.1 新材料的基本概念介绍新材料的定义和特点讨论新材料的研究方法和手段10.2 新材料的制备和表征介绍新材料的制备方法和表征技术讨论新材料的性能和应用10.3 新材料的研究趋势和挑战介绍新材料研究的发展趋势和挑战讨论固体物理在新材料研究中的作用和意义重点解析本文教案主要介绍了固体物理的基本概念、晶体结构、电子结构、能带理论、实验技术、电子光谱、电子性质、半导体材料、超导材料以及新材料探索等内容。
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1、1、解:实验表明,很多元素得原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成得晶体瞧作就是很多刚性球紧密堆积而成。
这样,一个单原子得晶体原胞就可以瞧作就是相同得小球按点阵排列堆积起来得。
它得空间利用率就就是这个晶体原胞所包含得点得数目n 与小球体积V 所得到得小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞得空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r, V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞得体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞得体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞得体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1、2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 得中心联线形成一个边长a=2r 得正三角形,第二层硬球N 位于球ABO 所围间隙得正上方并与这三个球相切,于就是: NA=NB=NO=a=2R 、即图中NABO 构成一个正四面体。
《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=32126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。