固体物理 第一章(1)
- 格式:ppt
- 大小:2.89 MB
- 文档页数:67
固体物理_第⼀章(1.4晶向、晶⾯指数)第1章晶体结构1.1 晶格的周期性1.2 典型晶格实例1.3 晶格的对称性1.4 晶向、晶⾯指数1.5 倒格⼦、布⾥渊区和晶体散射1.4.1 晶列指数(晶胞中)特别性质:所有平⾏晶列组成晶列族,包含所有格点晶列上的格点也是周期性的,且每⼀列格点分布⼀致同⼀个截⾯内,晶列是平⾏等距的晶列:连接任意格点的平⾏直线晶向:晶列的取向晶列指数:晶向的⽮量表达1.4.2 晶⾯指数(密勒指数)*平⾏的晶⾯组成晶⾯族,晶⾯族包含所有格点;* 晶⾯上的格点分布具有特定周期性,是⼆维格⼦* 同⼀族晶⾯中,每⼀个晶⾯的格点分布⼀致* 同⼀族晶⾯中,相邻晶⾯平⾏等距:系列平⾏等距晶⾯构成晶族晶⾯:晶格中任意三个不在同⼀直线上的格点决定的平⾯向与晶⾯正交(即为该晶⾯的法向⽮量):⽤平⾯的法线式⽅程可证明若截距为负数,则对应指数头上加“-”号等效晶⾯常⽤⼤括号表⽰{hkl},例如(100),(010)统⼀⽤{100}表⽰,同样包括{110}、{111}晶⾯;晶⾯指数较⼩的⾯,⼀般为解理⾯晶⾯指数可⽤于计算两个⾯之间的夹⾓等效于法线⽮量的夹⾓:⼆者内积/模的乘积晶⾯指数可⽤于计算两个⾯之间的间距:等效于离原点最近的晶⾯上任意⼀点的格⽮长度,在法线⽅向的投影即,假设基⽮长度分别为a、b、c,晶⾯指数为(h, k, l),则对应⽴体坐标系下的截距分别为a/h, b/k, c/l,继⽽,该晶⾯的法线⽮量为(h/a, k/b, l/c),写成⽅向向量为(h/a, k/b, l/c)222选择在a轴上的截距,在法线的投影,即a/h在⽅向的投影d222。
第一章 参考答案1体心立方格子和面心立方格子互为正倒格子,试证明之。
证:体心立方格子的固体物理学原胞(Primitive cell )的三个基矢是)(2),(2),(2321→→→→→→→→→→→→-+=+-=++-=k j i a a k j i a a k j i a a ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=+=+==⨯⋅=ΩΩ⨯=Ω⨯=Ω⨯=→→→→→→→→→→→→→→→→→→→→→)(2)(2)(22122,2:3213321213132321j i a b i k a b k j ab aa a a a ab a a b a a b ππππππ定义它们是倒点阵面心立方的三个基矢。
2 对六角密堆积结构固体物理学原胞基矢如→→→→→→→→=+-=+=kc a ja i a a j a i a a 321232232求倒格子基矢。
解:;,213→→→⊥a a a→→→→→→→→+-=+===ja i a a ja i a a a a a 2322322121)33(32)32(22332123213→→→→→→→→→→→→+=+Ω=Ω⨯==⨯⋅=Ω=j i aac a i ac j a a b ca aa a a kc a πππ ⎪⎭⎫ ⎝⎛+-=Ω⎪⎭⎫ ⎝⎛⨯=→→→→→j i a a a b 3332/2132ππ→→→→=Ω⎪⎭⎫⎝⎛⨯=kc a a b ππ2/22133求解简单立方中晶面指数为(hkl)的晶面簇间距。
解:正格子基矢是 →→→→→→===k a c j a b i a a ,,令 为相应的倒基矢→→→***,,c b a21222***,,3***)()()(2222)(222-→→→→→→→→→→→→→→→→→⎥⎦⎤⎢⎣⎡++==++=++==⨯⋅=Ω===a l a k ahK d kl a j k a i h a c l b k a h K a c b a kac j ab i aa hklnkl l k h πππππππ4 试证明六角密集结构中c/a=如图所示,ABC 分别表示六角密排结构中三个原子,D 表示中心的原子。
第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx =(1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。