普通生物学DNA复制
- 格式:ppt
- 大小:5.97 MB
- 文档页数:89
高中生物DNA的结构和复制知识点归纳名词:1、DNA的碱基互补配对原则:A与T配对,G与C配对。
2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。
DNA的复制实质上是遗传信息的复制。
3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。
4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。
5、人类基因组是指人体DNA分子所携带的全部遗传信息。
人类基因组计划就是分析测定人类基因组的核苷酸序列。
语句:1、DNA的化学结构:① DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。
②组成DNA的基本单位——脱氧核苷酸。
每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸③构成DNA的脱氧核苷酸有四种。
DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。
④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。
2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。
两条主链之间的横档是碱基对,排列在内侧。
相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。
3、DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。
②多样性:DNA中的碱基对的排列顺序是千变万化的。
碱基对的排列方式:4n(n为碱基对的数目)③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。
高中生物dna复制知识点
DNA复制是最重要的生物过程之一,这是遗传物质(DNA)进行复制和繁殖的重要方式,它占据了所有生物繁殖活动的基础。
DNA复制是整个细胞的基础,而每个细胞的繁殖过程
又是基因的复制过程。
DNA复制的简单解释是,DNA通过经典的“三步”步骤完成复制:开放、复制和修复。
在此“三步”过程中,DNA的结构发生变化,使其可以通过加上辅基因组元件(如核苷酸)而被复制。
首先,DNA会在“开放”步骤中摆脱双链结构,将其分为2条单链(无链复制,双链
复制),这是最重要的第一步,来开启双链DNA的复制。
其次,DNA会在“复制”步骤中进行分子复制,蓝色色调的聚合酶断开DNA的双链结
构并将DNA的单链延伸,同时用辅基因组元件重新粘合DNA双链,从而完成DNA的复制。
最后,DNA在“修复”步骤中进行细胞修复,在这一步中,细胞会执行一系列修复步骤,来保证两条折叠的DNA链复制后的正确性。
因此,DNA复制使DNA可以在生物繁殖过程中不断增加,使得其能够遗传到下一代。
这个复制过程确保了每一代细胞内的DNA都是准确的(这个准确性受到“修复”步骤的保护),而且每个个体都有一个独特的DNA组成,这就是每个个体的遗传物质的基础。
因此,让DNA正确地进行复制至关重要。
DNA复制在一系列重要的生物过程中发挥着
关键作用,如生物机能的形成和保护、繁殖、肿瘤形成等。
高中生物-DNA详解我选择介绍高中生物中的DNA复制与遗传信息的转移。
一、DNA复制的基本概念DNA复制是指在细胞分裂前,DNA分子通过复制生成两条完全相同的新分子的过程。
这个过程是生命遗传信息传递的基础,可以让细胞遗传信息得以传递到下一代细胞。
二、DNA复制的步骤DNA复制主要分为三个步骤:解旋、配对、复制。
1)解旋:DNA双螺旋分子被解开,使得两条链分开成为两个单链。
2)配对:两个单链上的碱基互相配对,形成新的DNA双链。
3)复制:新DNA链延伸,逐渐与已有的DNA链配对,最终形成两个完整的DNA双链分子。
三、DNA复制的重要性DNA复制是生命遗传信息传递的基础。
所有生物的遗传信息都存储在DNA中,通过DNA复制,每个细胞都可以将完整的遗传信息传递给它的子孙细胞。
没有DNA复制,遗传信息将无法保留,并且每个细胞只能复制一次。
四、遗传信息的转移除了DNA复制,遗传信息还可以通过基因转移或基因突变等方式进行转移。
基因转移是指通过将一个生物的DNA插入另一个生物中,将遗传信息从一个生物转移到另一个生物。
基因突变则是指DNA发生突变,导致遗传信息发生改变。
五、例题解析下面是一个涉及DNA复制的例题:题目:某生物的DNA序列为“ATCGGCTGTA”,在复制过程中,第一次复制后生成的新分子序列是什么?解:在DNA复制过程中,由于碱基互补规则,对于原DNA链的A,会复制成T;对于原DNA链的T,会复制成A;对于原DNA链的C,会复制成G;对于原DNA链的G,会复制成C。
综合以上规则,我们可以得到该生物的DNA序列的互补序列:ATCGGCTGTATAGCCGACAT因此,第一次复制后生成的新分子序列为TAGCCGACAT。
通过以上例题,我们可以了解到DNA复制及其重要性,也了解到了遗传信息的转移方式,对于深入理解生物学的本质和实践应用有很大的帮助。
高一生物dna的复制知识点DNA的复制是生物体生长发育和繁殖的基础,也是细胞遗传信息传递的关键过程。
本文将介绍关于DNA复制的知识点,包括DNA的结构特点、复制方式和复制步骤。
通过对这些知识的了解,我们可以更好地理解DNA复制的重要性以及细胞传代的机制。
一、DNA的结构特点DNA是由核苷酸组成的长链状分子,核苷酸由糖、磷酸和碱基组成。
DNA分子的结构特点主要包括:1. 双螺旋结构:DNA呈现出双螺旋结构,由两条互补的链以螺旋形状缠绕在一起。
2. 核苷酸配对规律:DNA的两条链通过碱基之间的氢键进行配对,遵循腺嘌呤(A)与胸腺嘧啶(T)之间的配对,鸟嘌呤(G)与胞嘧啶(C)之间的配对。
3. 5'端和3'端:DNA分子的每条链都有一个5'端和一个3'端,两条链是反向排列的,形成头尾相连的结构。
二、DNA的复制方式DNA的复制方式可以分为半保留复制和保留复制两种方式。
1. 半保留复制:在DNA复制过程中,每条亲本链作为模板,通过拆开双链,形成互补链,最终得到两个新的DNA分子,每个新分子中包含一个旧链和一个新合成的链。
这种复制方式保留了原始DNA分子的一半信息。
2. 保留复制:在某些特定的细胞或病毒中,DNA的全部信息都被复制并传递给下一代。
这种复制方式保留了原始DNA分子的全部信息。
三、DNA的复制步骤DNA的复制过程通常分为三个主要步骤:解旋、复制和连接。
1. 解旋:复制过程开始时,酶类介导DNA的解旋,使得双链DNA分离为两条单链DNA。
2. 复制:解旋后的DNA链上的酶根据碱基互补规律,以亲和特异性选择和配对相应的核苷酸,合成新的DNA链。
新合成的链与模板链形成互补的碱基序列。
3. 连接:新的DNA链由DNA聚合酶连接到模板链的3'端,经过多次的合成和连接,形成完整的双链DNA分子。
复制过程中还涉及一些辅助酶类,如DNA聚合酶、DNA引物和DNA修复酶,它们在复制过程中发挥重要的作用。
高一生物dna复制知识点DNA复制是指在细胞分裂过程中,DNA分子通过复制,生成两个完全相同的DNA分子,以确保遗传信息的传递和遗传物质的稳定。
下面将介绍高一生物中关于DNA复制的几个重要知识点。
一、DNA的结构DNA(脱氧核糖核酸)是由核苷酸组成的巨大分子,包含一个磷酸基团、一个五碳糖(脱氧核糖)和一个氮碱基。
DNA分子由两股互相缠绕的链组成,呈双螺旋的结构。
这两股链通过氢键相互连接,形成了螺旋结构。
二、DNA复制的基本过程DNA复制包括解旋、复制和连接三个阶段。
1. 解旋:DNA复制开始时,DNA双链会由酶的作用逐渐解开,形成两条单链,分别作为复制模板。
2. 复制:在解旋后,DNA复制酶(如DNA聚合酶)通过将游离的核苷酸与模板链上的互补碱基配对,合成新的链。
遵循碱基互补规则,腺嘌呤(A)与胸腺嘧啶(T)配对,胞嘧啶(C)与鸟嘌呤(G)配对。
这样,在每一条模板链上都会形成新的互补链。
3. 连接:新合成的DNA链与原有的DNA链通过磷酸二酯键连接在一起,形成完整的DNA分子。
此过程由DNA连接酶催化完成。
三、DNA复制的方向DNA复制是一个半保留复制的过程,即每个新的DNA分子包含一个原始链和一个新合成链。
1. 连续合成链:在DNA复制的一个分支中,新合成链可以连续地从5'到3'方向合成。
这条链称为连续合成链。
2. 链断续合成:另一方面,DNA复制的另一个分支并不以连续方式进行合成。
而是以断续的方式进行,形成所谓的不连续合成链或DNA片段。
这些片段称为Okazaki片段,每个片段长约100到200个核苷酸。
四、DNA复制的主要酶DNA复制过程中涉及到多种酶的协作。
1. 解旋酶:解旋酶能够解开DNA的双螺旋结构,分离两个DNA链,为复制提供模板。
2. DNA聚合酶:DNA聚合酶是主要的合成酶,能够将游离的核苷酸与模板链上的碱基进行配对合成新的链。
3. DNA连接酶:DNA连接酶能够将DNA片段连接在一起,形成完整的DNA分子。
名词解释半保留复制:一种双链脱氧核糖核酸的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。
因此,复制完成时将有两个子代的DNA分子。
每个分子的核苷序列均为亲代分子相同。
病毒:病毒是一种没有细胞结构的特殊生物,它们的结构非常简单,由蛋白质外壳和内部的遗传物质组成。
蛋白质的三级结构:三级结构是多肽链在二级结构的基础上进一步折叠、盘曲形成的三维空间结构,一般情况下呈球形或纤维状。
噬菌体:寄生于病菌中的病毒称为噬菌体。
基因突变:基因突变是染色体上某一个位点上基因的改变,基因突变使一个基因变成它的等位基因,并且通常会引起一定的表现型变化。
生物膜:膜相结构的膜。
氧化磷酸化:氧化磷酸化是生成ATP的一种主要方式,是细胞内能量转换的主要环节,动物细胞中有80%的ATP是由线粒体提供的。
双名法:每种生物的学名由两个拉丁字或拉丁化的字组成,第一个字是该种所在属的属名,其第一个字母需要大写,第二字是种名,表示该种的主要特征和产地。
光合磷酸化:由光照引起的电子传递与磷酸化作用相偶联而形成ATP的过程,植物叶绿体的类囊体膜或光合细菌的载色体在光下催化腺二磷与磷酸形成腺三磷的反应。
世代交替:进行有性生殖的生物生活史中,有性世代与无性世代更迭出现的生殖方式。
细胞骨架:狭义的细胞骨架是指复核细胞中蛋白纤维网络结构;广义的细胞骨架是指细胞核中存在的核骨架—核纤层体系。
限制性核酸内切酶:可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。
染色质和染色体:染色质是间期细胞内的主要成分,易被碱性染料着色,其化学成分主要为DNA和组蛋白,此外还含有少量的非组蛋白和RNA;染色体和染色质是同一物质在细胞周期的不同时期可见相互转变的不同形态结构。
双受精作用:双受精是指被子植物的雄配子体形成的两个精子,一个与卵结合形成二倍体的合子,另一个与中央细胞的极核融合形成初生胚乳核的现象。
基因工程:又称DNA重组技术、遗传工程、基因操等是将不同来源的基因按照预定的设计的蓝图,在体外构建遗传物质的新组合,并将它转移到原先没有这类基因的寄主细胞中进行扩增和表达,以改变细胞原有的遗传特性、获得新品种,生产新产品。
高中生物基因的复制过程生物基因的复制是指在细胞分裂过程中,DNA分子通过一系列的步骤进行复制,从而使得每个新生细胞都包含了与原细胞相同的遗传信息。
基因的复制是生物进化和遗传多样性的基础,对于我们理解生物的遗传机制和基因的传递具有重要意义。
一、引言基因复制是生物体不断更新和增殖的基础,它使得生物能够进行细胞分裂并将遗传信息传递给后代。
基因复制是一个复杂的过程,其中涉及到多个酶的参与和调控,而这些酶的功能以及它们之间的相互作用关系,对于我们理解基因复制过程的机制至关重要。
二、DNA复制的起始DNA复制的起始是基因复制的第一个步骤。
在有丝分裂和无丝分裂中,DNA分子需要首先被解旋,形成两条DNA模板链。
这一步骤的关键是蛋白酶——DNA解旋酶的作用。
DNA解旋酶能够解开DNA 双链的氢键,并分离两条链。
解旋之后,每一条模板链上的核苷酸会与游离核苷酸进行互补配对。
三、DNA聚合酶的作用DNA复制的第二个步骤是DNA聚合酶的作用。
DNA聚合酶是一种酶,它能够在模板链上加入新的核苷酸,从而合成新的DNA链。
DNA聚合酶具有高度的专一性,它只能在5'到3'的方向上合成新链。
在DNA复制的过程中,DNA聚合酶会识别模板链上的碱基,然后在新链上加入与之互补的碱基。
四、DNA复制的末端处理DNA复制的最后一个步骤是DNA复制的末端处理。
在DNA复制过程中,由于DNA链是由DNA聚合酶从5'到3'方向上合成的,所以在末端会产生一个问题:末端的DNA链不能被完整复制。
为了解决这个问题,细胞会利用一种酶——DNA聚合酶,对末端进行修复。
DNA聚合酶能够添加一些特殊的序列,从而保证末端的完整性。
五、DNA复制的调控DNA复制是一个复杂的过程,它需要多个酶的参与和调控。
细胞通过多种机制来确保DNA复制的准确性和高效性。
其中,一个重要的调控机制是DNA复制起始点的选择。
在细胞分裂过程中,细胞会选择一些特定的区域作为DNA复制的起始点。
普通生物学简答题一、简述生物的同一性,也就是生命的基本特征1.化学成分的同一性:从构成生物的化学元素和生物大分子的生物化学成分来看,不同生物在化学成分上存在着高度的同一性。
2.严整有序的结构:生物体的各种化学成分在体内不是随机堆砌在一起,而是形成严整有序的结构。
3.新陈代谢:所有生物体都处于与周围环境不断进行着物质的交换和能量的流动之中,一些物质被生物吸收后,在生物体内发生一系列变化最后成为代谢过程的最终产物而被排出体外,这就是新陈代谢。
4.生长发育:任何生物体在其一生中都要经历从小到大的生长过程,这是由于同化作用大于异化作用的结果,此外,在生物体的生活史中,其构造和机能都要经过一系列的变化,才能由幼体形成一个与亲体相似的成熟个体,然后经过衰老而死亡,这个总的转变过程叫做发育。
5.繁殖和遗传:当有机体生长发育到一定大小和一定程度时,就能产生后代,使个体数目增多,种族得以延续这种现象叫做繁殖。
生物在繁殖过程中,把它们的特性传给后代,这就是遗传。
但子代个体之间,以及子代与亲代之间也不会完全一样这种不同就是变异。
6.应激性和运动:生物能接受外界刺激而发生特异的反应,使生物趋吉避凶,这种特性称为应激性。
在大多数情况下,生物体都以某种形式的运动来对刺激作出应答,运动有物理运动滑雪运动生命运动等形式。
7.适应:适应是生物的普遍特征。
适应一般有两方面的含义:一是生物的结构都适应于一定的功能,二是生物的结构和功能适应该生物在一定环境条件下的生存和延续。
8.演变和进化:生物具有演变和进化的历史,纷繁复杂的生物界由低等到高等由简单到复杂,由水生到陆生的逐渐演变,就是生物的进化。
二、简述DNA与RNA的区别。
1.组成DNA的戊糖为脱氧核糖,组成RNA的戊糖为核糖。
2.组成DNA的含氮碱基为AGCT组成RNA的含氮碱基为AGCU。
3.DNA一般为反向平行的双链结构,RNA一般为单链结构。
4.DNA主要存在于细胞核中,RNA主要存在于细胞质中。
dna复制总结知识点DNA复制是生物体细胞中非常重要的生物学过程,它确保了遗传信息的传递和继承。
在这篇文章中,我将总结DNA复制的知识点,包括复制机制、调控、错误修复等方面。
1. DNA结构在了解DNA复制的机制之前,我们需要先了解DNA的结构。
DNA是由四种碱基(腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶)组成的双螺旋分子,它具有很强的稳定性和特异性。
每条DNA链由磷酸、糖和碱基组成,两条链通过碱基间的氢键结合在一起。
这种双螺旋结构使得DNA可以在细胞分裂时得到准确地复制。
2. 复制机制DNA复制是一个精确而复杂的过程,它由一系列酶和蛋白质协同作用完成。
复制的过程可以在整个细胞周期中观察到,但在细胞分裂的S期会特别活跃。
DNA复制的过程可以简单地分为三个步骤:分离、合成和连接。
在分离步骤中,复制起点被确定并且DNA双链被解旋、分离;在合成步骤中,DNA聚合酶以单链DNA为模板通过连接新的碱基合成新的DNA链;在连接步骤中,新的DNA链被连接成一个完整的双链DNA。
DNA复制的起点是一个序列,称为复制起点。
在原核生物中,这个序列称为起点序列(oriC);在真核生物中,这个序列称为起点(origin)。
复制起点是一个具有特殊结构和序列特征的区域,它是复制起点识别和复制启动的必要条件。
复制终点是DNA复制的终止点,它可以是一个特定的序列或者是一个特定的结构。
在原核生物中,DNA复制通过环状DNA的拼接完成,然后由DNA环切酶切割;在真核生物中,DNA复制开始于复制起点,但常常不能延伸至末端,造成一条新DNA分子比原DNA 分子短一些。
3. DNA复制的调控DNA复制的调控是细胞保持遗传信息稳定性的重要机制。
细胞在复制过程中可以通过不同的方式来调控DNA的复制速度和精确度。
例如,某些细胞周期蛋白激酶可以调节细胞周期、DNA复制和细胞分化;某些蛋白激酶可以通过修饰DNA复制酶来改变复制速度和准确度等。
DNA复制也可以通过DNA甲基化来调控。
高中生物教案DNA复制
一、教学目标
1. 了解DNA的结构和功能;
2. 掌握DNA复制的基本原理和过程;
3. 理解DNA复制的意义和作用。
二、教学重点与难点
1. DNA的结构和功能;
2. DNA复制的过程、原理和重要意义。
三、教学内容
1. DNA的结构和功能;
2. DNA复制的基本过程:合成链、分子复制;
3. DNA复制的重要意义。
四、教学方法
1. 讲授相结合的教学方法;
2. 多媒体辅助教学;
3. 实验演示。
五、教学过程
1. 导入:利用多媒体展示DNA的结构和功能;
2. 讲解DNA复制的基本原理和过程;
3. 展示DNA复制的实验过程;
4. 学生讨论DNA复制的意义和作用;
5. 结束。
六、教学反馈
1. 组织学生进行小组讨论,让学生总结DNA的结构和功能以及DNA复制的过程;
2. 完成相关练习题目,检测学生对DNA复制的掌握情况。
七、教学延伸
1. 练习DNA复制的相关实验操作;
2. 深入学习DNA的进化意义。
八、板书设计
DNA复制
九、教学资源
1. 实验用具和材料;
2. 多媒体设备。
十、教学评估
1. 整体教学效果;
2. 学生的学习情况和表现。