条件概率绝对经典
- 格式:ppt
- 大小:388.00 KB
- 文档页数:19
率失真理论及经典的码率控制算法一、视频编码的率失真思想率失真理论研究的是限失真编码问题:能使限失真条件下比特数最小的编码为最佳编码。
设信源为},...,,{21m m a a a A =,经过编码后,信宿为},...,,{21n n b b b B =,定义信源、信宿概率空间分别为)}(),...,(),({Q )}(),...,(),({2121n m b Q b Q b Q a P a P a P P 、。
定义平均失真函数)(Q D 如下: ∑∑∑∑======m j j k j nk k j m j k j n k k j a b Q a P b a d b a P b a d Q D 1111)|()(),(),(),()(其中,),(k j b a d 为失真度,度量准则可是均方误差MSE 、绝对差分和SAD 或差分平方和SSD 等。
若信源概率分布)(j a P 已知,则平均失真仅仅取决于条件概率)|(j k a b Q ,从而必然存在这样一个条件概率)|(j k a b Q 使得D Q D ≤)(,即:))((D Q D Q Q D ≤=即D Q 为保证平均失真)(Q D 在允许范围D 内的条件概率集合。
进一步,定义),(Y X I 为接收端获取的平均信息量:)()|(log)|()(),(1k j k m j j k j b Q a b Q a b Q a P Y X I ∑==同样,在给定的)(j a P 前提下,),(Y X I 的大小也只取决于。
现在率失真函数)(D R 定义为在D Q 范围内寻找最起码的信息量,即:),()(min Y X I D R DQ Q ∈=该公式的含义:在允许的失真度为D 的条件下,信源编码给出的平均信息量的下界,也就是数据压缩的极限数码率。
当数码率R 小于率失真函数)(D R 时,无论采用什么编码方式,其平均失真必大于D 。
视频压缩是典型的限失真编码,率失真理论同样适应于视频编码。
一.选择题(共11小题)1.从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是()A.B.C.D.2.已知P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,则P()=()A.B.C.D.3.从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为()A.B.C.D.4.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(B|A),P(A|B)分别等于()A.,B.,C.,D.,5.已知P(A)>0,P(B)>0,P(C)>0,下列说法错误的是()A.若事件A,B独立,则P(A)=P(A|B)B.若事件A,B互斥,则P(B|A)=P(A|B)C.若事件A,B独立,则P(C|AB)=P(C|A)P(C|B)D.若事件A,B互斥,事件A,C独立,事件B,C独立,则P(C|(A+B))=P(C|A).6.6道题目中有5道理科题目和1道文科题目,如果不放回地依次抽取2道题目,则在第1次抽到理科题目的条件下,第2次抽到理科题目的概率为()A.B.C.D.7.盒子里有1个红球与n个白球,随机取球,每次取1个球,取后放回,共取2次.若至少有一次取到红球的条件下,两次取到的都是红球的概率为,则n=()A.3B.4C.6D.88.甲袋中有4个红球,4个白球和2个黑球;乙袋中有3个红球,3个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以A,B,C表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以D表示事件“取出的是红球”,则P(D)=()A.B.C.D.9.已知桌上放有3本语文书和3本数学书.小明现从这6本书中任意抽取3本书,A表示事件“至少抽到1本数学书”,B表示事件“抽到语文书和数学书”,则P(B|A)=()A.B.C.D.10.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=()A.0.24B.0.375C.0.4D.0.511.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.7二.填空题(共4小题)12.从﹣2,﹣1,1,2,3这5个数中任取2个不同的数,记“两数之积为正数”为事件A,“两数均为负数为事件B.则P(B|A)=.13.一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为.14.已知随机事件A,B,P(A)=,P(B)=,P(A|B)=,则=.15.已知,,则P(B)=.参考答案与试题解析一.选择题(共11小题)1.从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是()A.B.C.D.解答:解:设女生甲被选中为事件A,事件A表示女生甲被选中后再从剩下的6人中选2人,故,设男生至少一人被选中为事件B,事件AB表示女生甲被选中后再选2男生或1男生和1女生(从剩余4女生中选),故,则在女生甲被选中的条件下,男生至少一人被选中的概率是.故选:C.2.已知P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,则P()=()A.B.C.D.解答:解:P(B)=P(A)P(B|A)+,∵P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,∴0.3=P(A)×0.9+[(1﹣P(A)]×0.2,解得P(A)=,∴.故选:A.3.从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为()A.B.C.D.解答:解:令事件A为甲被选中的情况,事件B为乙被选中的情况,故P(A)=,P(AB)=,故P(B|A)=.故选:A.4.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(B|A),P(A|B)分别等于()A.,B.,C.,D.,解答:解:由题意知:事件AB=“三个点数都不同且至少出现一个6点”,∵,,,∴,.故选:B.5.已知P(A)>0,P(B)>0,P(C)>0,下列说法错误的是()A.若事件A,B独立,则P(A)=P(A|B)B.若事件A,B互斥,则P(B|A)=P(A|B)C.若事件A,B独立,则P(C|AB)=P(C|A)P(C|B)D.若事件A,B互斥,事件A,C独立,事件B,C独立,则P(C|(A+B))=P(C|A).解答:解:A,若事件A,B独立,则P(A|B)===P(A),故A正确,B,若事件A,B互斥,则P(AB)=0,则P(B|A)==0,P(A|B)==0,∴P(B|A)=P(A|B),∴B正确,C,若事件A,B独立,则P(AB)=P(A)P(B),∴P(C|(AB))===+≠P(C|A)P(C|B),故C错误,D,∵事件A,B互斥,∴P(A+B)=P(A)+P(B),∵事件A,C独立,事件B,C独立,∴P(AC)=P(A)P(C),P(BC)=P(B)P(C),∴P(C|(A+B))=====P(C)==P(C|A),故D正确.故选:C.6.6道题目中有5道理科题目和1道文科题目,如果不放回地依次抽取2道题目,则在第1次抽到理科题目的条件下,第2次抽到理科题目的概率为()A.B.C.D.解答:解:由题意,6道题目中有5道理科题目和1道文科题目,不放回地抽取两次,设第一次抽到理科题目为事件A,第二次抽到理科题目为事件B,则,P(AB)=,则P(B|A)=.故选:B.7.盒子里有1个红球与n个白球,随机取球,每次取1个球,取后放回,共取2次.若至少有一次取到红球的条件下,两次取到的都是红球的概率为,则n=()A.3B.4C.6D.8解答:解:设事件A为至少有一次取到红球,事件B为两次都取到红球,由每次取后放回知,两次都取到白球的概率为,故,,故n=4.故选:B.8.甲袋中有4个红球,4个白球和2个黑球;乙袋中有3个红球,3个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以A,B,C表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以D表示事件“取出的是红球”,则P(D)=()A.B.C.D.解答:解:由题意可得,P(A)=,P(B)=,P(C)=,故P(D)=P(AD)+P(BD)+P(CD)=.故选:C.9.已知桌上放有3本语文书和3本数学书.小明现从这6本书中任意抽取3本书,A表示事件“至少抽到1本数学书”,B表示事件“抽到语文书和数学书”,则P(B|A)=()A.B.C.D.解答:解:根据题意可得,,由条件概率的公式得.故选:D.10.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=()A.0.24B.0.375C.0.4D.0.5解答:解:设A,B为两个事件,由已知P(A)=0.5,P(B|A)=0.3,得P(AB)=P (B|A)⋅P(A)=0.15,所以,故选:B.11.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.7解答:解:袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.设事件A表示“第一次取到红球”,事件B表示“第二次取到白球”,P(A)=,P(AB)==,∴第一次取得红球的条件下第二次取得白球的概率为:P(B|A)===0.5.故选:B.二.填空题(共4小题)12.从﹣2,﹣1,1,2,3这5个数中任取2个不同的数,记“两数之积为正数”为事件A,“两数均为负数为事件B.则P(B|A)=.解答:解:从﹣2,﹣1,1,2,3这5个数中任取2个不同的数有种取法,其中满足两数之积为正数的有种取法,满足两数之积为正数且两数均为负数的有种取法,所以,,所以.故答案为:13.一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为.解答:解:若A表示“2名中至少有1名男生”,B表示“2名中有1名女生”,所以2名中有1名是男生的条件下,另1名是女生的概率为,而,,故.故答案为:.14.已知随机事件A,B,P(A)=,P(B)=,P(A|B)=,则=.解答:解:依题意得,所以,故,所以.故答案为:.15.已知,,则P(B)=.解答:解:由题意得,而,得,而,解得,故答案为:.。
经典概率问题:山羊问题(又称蒙提·霍尔问题)山羊问题(又称蒙提·霍尔问题,The Monty Hall problem)是一道著名的概率问题,它源于1963年美国开播的电视游戏节目《让我们做个交易》,现在你作为参赛选手经过重重考验在节目的最后环节脱颖而出,却面临这样一个难题:在你眼前有3扇巨大的关闭的门,编号分别是A、B、C。
站在旁边的主持人蒙提·霍尔告诉你,其中一扇门的后面摆着极为诱人的大奖(比如说一辆小轿车),而另外两扇门的后面各站着一头羊,你需要在这3扇门中选择一扇门,并获得那扇门后面的奖品。
你经过深思熟虑,选择了编号为A的门,在你紧张兮兮正准备打开时,主持人说慢着,然后他打开了编号为C的门,后面正好是一头山羊,然后他问你:现在再给你一次选择的机会,你是坚持选择现在的门A,还是更换成门B?于是你的小脑袋开始转动了,下面观众也开始帮你出谋划策,总结有四种典型的分析:分析1:第一次选择A、B、C门正确的概率为1/3;主持人排除一扇门并不会改变A, B, C 的概率,所以,不管是否更换门获得奖品的概率都是1/3。
分析2:第一次选择A门正确的概率为1/3,主持人排除一扇门以后,剩下两扇门的概率都相应地变成了1/2。
所以,不管是否改变概率都是1/2。
分析3:第一次选择A门正确的概率为1/3,主持人排除一扇门之后,如果不重新选择,A 门正确的概率还是1/3,而重新选择另一扇门可以使概率上升为1/2。
分析4:第一次选择A门正确的概率为1/3,主持人排除一扇门之后,如果不重新选择,A 门正确的概率还是1/3,而重新选择另一扇门可以使概率上升到2/3。
仔细思考其实四种分析都有道理,然而你深入思考以后毅然选择了门B,因为选中的概率是2/3,而坚持原来的选择的概率是1/3,理由如下:第一种是从经验主义角度出发的。
你参加这个节目前就在家里面和你的小女儿玩了100次这个游戏,你的小女儿每次都在打开一扇有羊的门后改变最初的选择;然后你又找了你儿子玩了100次,他全都坚持一开始的选择。
一、条件概率生活中很多概率都是在某些特殊条件下的概率。
比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。
只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。
基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。
韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。
我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。
所以也很容易理解,分子是A和B的和事件(交集)的概率。
性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。
(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。
那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。
上面两个式子在实际计算中要根据问题灵活选择。
我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。
第1讲 概率、随机变量及其分布列概率的研究对象是随机现象,为人们从不确定性的角度认识客观世界提供重要的思维模式和解决问题的方法,统计的研究对象是数据,核心是数据分析。
概率为统计的发展提供理论基础,高考中概率与统计考题常常具有鲜明的时代和文化背景,试题难度逐渐加大,重点提升数据分析、数学建模、逻辑推理和数学运算素养。
基础知识回顾1.古典概型概率公式: ()试验的样本点总数包含的样本点数事件A A P =。
2.条件概率公式:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫作条件概率,用符号()A B P 来表示,其公式为()()()()()0>=A P A P AB P A B P 3.全概率公式:设n A A A ,...,21n A A A ,...,21是一组两两互斥的事件,Q A A A n = ...21,且()n i A P i ,...,2,1,0=>,则对任意的事件Q B ⊆,有()()()i ni i A B P A P B P ∑==1。
4.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()m k C C C k X P n N k n M N k M ,...,2,1,0,===--,其中{}n M m ,m in =, 且()NM n X E N N M n N M N n •=∈≤≤*,,,,,。
5.二项分布 :一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p<1),用X 表示事件A 发生的次数,则X 的分布列为()()()()()p np X D np X E nk p p C k X P k n k k n -===-==-1,,...,2,1,0,1 6.正态分布: 如果对于任何实数a ,b(a<b),随机变量X 满足()()dx x b X a P b au σϕ,⎰=≤<(即x=a ,x=b ,正态曲线及x轴围成的曲边梯形的面积),那么称随机变量X 服从正态分布记作()2,~σu N X 。