苏教版九年级上册数学[等可能条件下的概率--知识点整理及重点题型梳理]
- 格式:doc
- 大小:157.50 KB
- 文档页数:6
知识点总结第一章一元二次方程定义方程是只含有一个未知数的整式方程,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
2用配方法求解一元二次方程思路:将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可求出它的根。
我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3。
用公式法求解一元二次方程对于一元二次方程,当b2-4ac≥0时,它的根是:上面这个公式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。
对于ax2+bx+c=0(a,b,c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根。
当b2-4ac=0时,方程有两个相等的实数根。
当b2-4ac<0时,方程没有实数根。
4、用因式分解法求解一元二次方程当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以将方程分解成两个一元一次方程,这两个一元一次方程的解就是一元二次方程的根,这种解一元二次方程的方法,叫做因式分解法。
5、一元二次方程的根与系数的关系(韦达定理)如果方程ax2+bx+c=0(a,b,c为常数,a≠0)有两个实数根x1,x2,那么x1+x2=-b/a,x1x2=c/a思维导图:知识点归类建立一元二次方程模型知识点一一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
一元二次方程的解法一、一元二次方程概念:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
二、求解方法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
例说概率计算的技巧概率计算是新教材的一个新内容和新亮点,概率计算问题与其它问题一样也有一些技巧,现举例如下:例1 同时抛掷3枚硬币,计算三个正面都朝上的概率.分析:由于每个硬币朝上的面只有正面和反面两种情况,因而可以通过画树型图: 从图中我们可以清楚地看到三枚硬币出现的情况有:“正正正”、“正正反”、“正反正”、“正反反”、“反正正”、“反正反”、“反反正”、“反反反”共8种,其中三个都是正面的“正正正”只有一种,因此,三个正面都朝上的概率是18. 同样,三个反面都朝上的概率也是18,既有正面也有反面朝上的概率是6384=. 例 2 四只蚂蚁分别从正方形的四个顶点同时沿正方形的边爬行,如果它们的速度相同,那么这四只蚂蚁不相撞的概率是多少? 分析:许多人的解法是:将每只蚂蚁可能爬行的方向按顺时针和逆时针一一罗列出来,然后确定不相撞的情形(都按顺时针或逆时针方向爬行)求解.而事实上,我们可以先确定第一只蚂蚁爬行的方向,为了不相撞,其余三只蚂蚁爬行的方向必须与第一只相同,而每只蚂蚁爬行方向与第一只相同的可能性都是12,因此,三只蚂蚁爬行与第一只都相同的可能性是11112228⨯⨯=,这就是四只蚂蚁不相撞的概率. 例3 某班有50名同学,求这50名同学中至少有两位同学生日相同的概率.分析:直接入手很难,先求50名同学生日互不相同的概率.把50个同学按号数1至50进行编号,365天按1月1日至12月31日依次记为第1天,第2天,……,第365天.假设1号是第1天出生的,那么2号与1号不同生日,他只能在余下的364天中选一天,因此, 2号与1号不同生日的概率是364365;假设2号是第2天出生的,那么3号和12,号不同生日,她只能在余下的363天中选一天,因此,3号与2号、1号生日不同的概率是363365;……;依此类推,50号与49481,,,…号生日不同的概率是316365. 因此,50人生日互不相同的概率是364363316365365365⨯⨯⨯……(今后将会学到)0.03≈,正 反正 正 正 反反硬币2 硬币1反正 反反硬币3正反正故50人中至少有两人生日相同的概率为364363316197 365365365-⨯⨯⨯≈%…….因此,50名同学中有生日相同的概率约为97%.。
苏教九年级概率知识点概率是数学的一个重要分支,也是我们日常生活中经常接触到的概念。
在苏教九年级中,学生需要学习一些基本的概率知识点,以便能够正确地分析和解决与概率相关的问题。
本文将围绕苏教九年级的概率知识点展开,帮助学生巩固和扩展他们的概率学习。
一、实验与事件在概率的学习中,实验和事件是非常重要的概念。
实验指的是对某个随机现象进行观察、记录和分析的过程,而事件则是实验可能出现的结果。
实验可以分为两类:随机实验和确定性实验。
随机实验是指在相同条件下,进行多次实验可能出现不同结果的实验,而确定性实验则是只有唯一确定结果的实验。
事件的分类包括:基本事件、复合事件、对立事件等等。
基本事件是实验中最基本的结果,复合事件是由基本事件组成的事件,而对立事件则是与另一事件互斥的事件。
二、概率的定义与性质在概率的学习中,概率的定义和性质是非常重要的基础知识。
概率可以用来描述一个事件发生的可能性大小。
概率的定义包括两种:频率定义和古典定义。
频率定义是指一个事件发生的概率等于该事件在大量重复实验中发生的相对次数,而古典定义则是指一个事件发生的概率等于该事件中有利结果的数量与可能结果的数量之比。
概率的性质包括:非负性、规范性和可列可加性。
非负性指概率一定是非负数,规范性指全样本空间的概率为1,可列可加性指对于两个互不相容的事件,它们的概率之和等于它们的并事件的概率。
三、事件的概率计算在实际应用中,学生需要学会如何计算事件的概率。
常见的计算方法包括:列举法、几何法和代数法。
列举法是指通过列举所有可能结果来计算概率。
例如,如果掷一个骰子,计算出现奇数的概率可以通过列举所有可能结果为奇数的情况,并计算这些情况的概率之和。
几何法是指通过几何图形的面积来计算概率。
例如,如果在平面上随机选择一个点,计算这个点在一个正方形内的概率可以通过计算正方形面积与点所在区域的面积之比。
代数法是指利用概率模型和数学运算来计算概率。
例如,如果从一副扑克牌中随机抽取一张牌,计算抽到红心牌的概率可以通过计算红心牌的数量与总牌数的比值。
苏教版九年级上册数学
重难点突破
知识点梳理及重点题型巩固练习
等可能条件下的概率--知识讲解
【学习目标】
1.知道试验的结果具有等可能性的含义;
2.会求等可能条件下的概率;
3.能够运用列表法和树状图法计算简单事件发生的概率.
【要点梳理】
要点一、等可能性
一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性.
要点二、等可能条件下的概率
1.等可能条件下的概率
一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A
发生,那么事件A发生的概率P(A)=m
n
(其中m是指事件A发生可能出现的结果数,n
是指所有等可能出现的结果数).
当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率.
2.等可能条件下的概率的求法
一般地,等可能性条件下的概率计算方法和步骤是:
(1)列出所有可能的结果,并判定每个结果发生的可能性都相等;
(2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m;
(3)计算所求事件发生的可能性:P(所求事件)=m
n
.
要点三、用列举法计算概率
常用的列举法有两种:列表法和画树状图法.
1.列表法
当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.
列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.
要点诠释:
(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;
(2)列表法适用于涉及两步试验的随机事件发生的概率.
2.树状图
当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.
树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.
要点诠释:
(1)树状图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;
(2)在用树状图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 【典型例题】
类型一、等可能性
1.如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什么?
【思路点拨】可以采用面积法计算各颜色所占的比例,比例大的,指针落在该区域的可能性也大.
【答案与解析】
解:落在黄色区域的可能性大.
理由如下:
由图可知:黄色占整个转盘面积的;
红色占整个转盘面积的;
蓝色占整个转盘面积的.
由于黄色所占比例最大,所以,指针落在黄色区域的可能性较大.
【总结升华】计算随机事件的可能性的大小,根据不同题目的不同条件确定解法,如面积法、数值法等.
类型二、等可能条件下的概率
2.(2015•本溪)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()
A.16个B.20个C.25个D.30个
【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【答案】A.
【解析】设红球有x个,根据题意得,
4:(4+x)=1:5,
解得x=16.
故选A.
【总结升华】用频率估计概率,强调“同样条件,大量试验”.
举一反三:
【变式】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为()
A.1
9
B.
1
8
C.
2
9
D.
1
3
【答案】D.
3.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
6
【思路点拨】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.
【答案】B.
【解析】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针
指向阴影部分的概率是2÷6=1
3
.故选B.
【总结升华】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.举一反三:
【变式1】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.
【答案】P(停在阴影部分)=2
3
.
【变式2】如图,已知等边△ABC的面积为1,D、E分别为AB、AC的中点,若向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)()
A.1
4
B.
1
2
C.
3
4
D.
2
3
【答案】C.
类型三、用列举法计算概率
4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是()
A.1
3
B.
2
3
C.
1
6
D.
5
6
【思路点拨】根据题意列出相应的表格,得出所有等可能的情况数,找出之和为奇数的情况数,即可求出所求的概率.
【答案】B.
【解析】解:列表得:
所有等可能的情况有12种,其中之和为奇数的情况有8种,
则p=
82
123
,故选B.
【总结升华】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
举一反三:
【变式】现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()
A.1
3
B.
1
2
C.
1
4
D.
2
3
【答案】B.
提示:解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:
∵一共有12种情况,每种情况都是等可能的,两个粽子都没有蛋黄的有6种情况,
∴则这两个粽子都没有蛋黄的概率是
61 122
.
5.(2015•朝阳)在学习概率的上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.
甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)
【思路点拨】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.
【答案与解析】
解:(1)甲同学的方案公平.理由如下:
获胜的概率为:=,则小刚获胜的概率为:,
故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;
所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,
故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.
【总结升华】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
举一反三:
【变式】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中
白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为1
2
.
(1)试求袋中蓝球的个数.
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次
摸到的都是白球的概率. 【答案】(1)1个;
(2)P(两次摸到白球)=1
6
.。