2014中考复习第17讲_三角形与全等三角形
- 格式:ppt
- 大小:2.83 MB
- 文档页数:83
20114年中考专题复习 三角形的初步知识彩虹教育 杨义茂一、考点知识与应用考点一 三角形的性质:1、三角形的内角和是 ,三角形的任意一个外角 和它不相邻两个内角的和,三角形的一个外角 任意一个和它不相邻的内角2、三角形任意两边之和 第三边,任意两边之差 第三边3、三角形具有 性.应用:1、已知三角形的三边长分别是3、x 、9,则化简513x x -+-= ;2、有4根木条,长度分别为6cm ,8cm ,12cm ,20cm ,选其中三根作为边组成三角形,请问:共有多少种组合方法?其中能构成三角形的有几种?3、如图所示,P 为△ABC内任意一点,∠1=∠2,求证:∠ACB与∠BPC互补。
4、如图,在ΔABC 中,∠C=90°,BE 平分∠ABC,AF 平分外角∠BAD,BE 与FA 交与点E 。
求∠E 的度数。
考点二 定义与命题:1、定义:_______________________________________________________________2、命题:_____________________________________________________________应用:1、下列语句:①明天下雨吗? ②中国加油!四川加油!③锐角都相等.④过直线外一点有且只有一条直线和已知直线平行.其中是命题的有( )A、1个 B、2个 C、3个 D、4个 2、下列语句中,属于定义的是( )A 、对顶角相等B 、三角形的内角和等于1800C 、连接A 、B 两点并延长至点CD 、连接三角形两边中点的线段叫做三角形的中位线。
3、下列命题中,是假命题的为( ) A 、邻补角的平分线互相垂直;B 、平行于同一直线的两条直线互相平行;C 、如果一个角的两边平行于另一个角的两边,则这两个角一定相等;D 、平行线的一组内错角的平分线互相平行。
4、有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是1或0。
第二节 三角形的基础知识与全等三角形知识点一:三角形的分类及性质 1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段(2)三条线段不在同一直线上, 三角形是封闭图形 (3)首尾顺次相接三角形用符号“∆”表示,顶点是A 、B 、C 的三角形记作“∆ABC ”,读作“三角形ABC ”。
5.三角形的分类(1)按角的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形6.三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
.变式练习1:等腰三角形两边长分别是3和6,则该三角形的周长为15.[变式练习2:已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 16【解析】C组成三角形的三条线段长度须满足“两边之和大于第三边,两边之差小于第三边”.此三角形的两边之和为14,两边之差为6,所以此三角形第三边的长可能是11.变式练习3:下列长度的三根小木棒能构成三角形的是( D )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm7.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.变式练习:在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为( C ) A.35°B.40°C.45°D.50°(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.8.三角形中的重要线段8.三角形中的重要线段四线性质角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半注意:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系注意:(1)在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
2013年中考数学专题复习第十七讲三角形与全等三角形【基础知识回顾】三角形的概念:1、由直线上的三条线段组成的图形叫三角形2、三角形的基本元素:三角形有条边个顶点个内角二、三角形的分类:按边可分为三角形和三角形,按角可分为三角形三角形三角形【名师提醒:等边三角形属于特殊的三角形,锐角三角形和钝角三角形有事称为三角形】三、三角形的性质:1、三角形的内角和是三角形的任意一个外角和它不相得两个内角的和三角形的一个外角任意一个和它不相邻的内角2、三角形任意两边之和第三边,任意两边之差第三边3、三角形具有性【名师提醒:1、三角形的外角是指三角形一边和另一边的组成的角,三角形有个外角,三角形的外角和事,是其中各外角的和2、三角形三边关系定理是确定三条线段否构成三角形和判断限度间不等关系的主要依据】四、三角形中的主要线段:1、角平分线:三角形的三条角平分线都在三角形部且交于一点,这些是三角形的心它到得距离相等2、中线:三角形的三条中线都在三角形部,且交于一点3、高线:不同三角形的三条高线位置不同,锐角三角形三条高都连三角形直角三角形有一条高线在部,另两条河重合,钝角三角形有一条高线在三角形部,两条在三角形部4、中位线:连接三角形任意两边的线段叫做三角形的中位线。
定理:三角形的中位线第三边且等于第三边的【名师提醒:三角形的平分线、中线、高线、中位线都是且都有条】五、全等三角形的概念和性质:1、的两个三角形叫做全等三角形2、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)周长、面积分别对应【名师提醒:全等三角形的性质是证明线段、角等之间数量关系的最主要依据】一、全等三角形的判定:1、一般三角形的全等判定方法:①边角边,简记为②角边角:简记为③角角边:简记为④边边边:简记为2、直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定【名师提醒:1、判定全等三角形的条件中,必须至少有一组对应相等,用SAS 判定全等,切记角为两边的2、判定全等三角形的有关条件要特别注意对应两个字】【重点考点例析】考点一:三角形内角、外角的应用例1 (2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360° B.250° C.180° D.140°思路分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.对应训练1.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1= °.1.80分析:先根据三角形内角和定理求出∠ACB的度数,再根据对顶角相等求出∠1的度数即可.解:∵△ABC中,∠A=60°,∠B=40°,∴∠ACB=180°-∠A-∠B=180°-60°-40°=80°,∴∠1=∠ACB=80°.故答案为:80.点评:本题考查的是三角形的内角和定理,即三角形内角和是180°.考点二:三角形三边关系例2 (2012•泸州)已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11 或13 D.12或152.分析:首先从方程x2-6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.解:由方程x2-6x+8=0,得:解得x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为4+3+6=13.故选A.点评:考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.对应训练1.(2012•义乌市)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2 B.3 C.4 D.8思路分析:根据三角形三边关系,可令第三边为X,则5-3<X<5+3,即2<X<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.解:由题意,令第三边为X,则5-3<X<5+3,即2<X<8,∵第三边长为偶数,∴第三边长是4或6.∴三角形的三边长可以为3、5、4.故选:C.点评:此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.考点三:三角形全等的判定例3 (2012•乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个思路分析:①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;②当E为AC中点,F为BC中点时,四边形CEDF为正方形;③由割补法可知四边形CDFE的面积保持不变;④△DEF是等腰直角三角形EF,当DF与BC垂直,即DF最小时,FE取最小值,此时点C到线段EF的最大距离.解:①如图,连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∵AE=CF,∴△ADE≌△CDF;∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.故此选项正确;②当E、F分别为AC、BC中点时,四边形CDFE是正方形,故此选项错误;③如图2所示,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,可以利用割补法可知四边形CDFE的面积等于正方形CMDN面积,故面积保持不变;故此选项错误;④△DEF是等腰直角三角形EF,当EF∥AB时,即EF取最小值此时点C到线段EF.故此选项正确;故正确的有2个,故选:B.点评:此题主要考查了全等三角形的判定与性质以及正方形、等腰三角形、直角三角形性质等知识,根据图形利用割补法可知四边形CDFE的面积等于正方形CMDN面积是解题关键.例4 (2012•珠海)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.思路分析:(1)根据正方形的性质可得AD=CD,∠ADC=90°,∠EA′D=45°,则∠A′DE=90°,再计算出∠A′ED=45°,根据等角对等边可得AD=ED,即可利用SAS证明△AA′D≌△CED;(2)首先由AC=A′C,可得点C在AA′的垂直平分线上;再证明△AEB′≌△A′ED,可得AE=A′E,进而得到点E也在AA′的垂直平分线上,再根据两点确定一条直线可得直线CE 是线段AA′的垂直平分线.证明:(1)∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠A′DE=90°,根据旋转的方法可得:∠EA′D=45°,,∴∠A′ED=45°,∴A′D=DE,在△AA′D和△CED中: AD=CD,∠ADA′=∠EDC,A′D=ED,∴△AA′D≌△CED(SAS);(2)∵AC=A′C,∴点C在AA′的垂直平分线上,∵AC是正方形ABCD的对角线,∴∠CAE=45°,∵AC=A′C,CD=CB′,∴AB′=A′D,在△AEB′和△A′ED中:∠EAB′=∠EA′D,∠AEB′=∠A′ED ,AB′=A′D,∴△AEB′≌△A′ED,∴AE=A′E,∴点E也在AA′的垂直平分线上,∴直线CE是线段AA′的垂直平分线.点评:此题主要考查了正方形的性质,以及旋转的性质,关键是熟练掌握正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;找准旋转后相等的线段.对应训练3.(2012•鸡西)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=2BC;②S△AEF≤14S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A .1个B .2个C .3个D .4个3.分析:先由ASA 证明△AED ≌△CFD ,得出AE=CF ,再由勾股定理即可得出BE+CF=AB= 2BC ,从而判断①;设AB=AC=a ,AE=CF=x ,先由三角形的面积公式得出S △AEF =-12(x-12a )2+18a 2, 14S △ABC =14×12a 2=18a 2,再根据二次函数的性质即可判断②; 由勾股定理得到EF 的表达式,利用二次函数性质求得EFa ,而a ,所以EF ≥AD ,从而④错误;先得出S 四边形AEDF =S △ADC =12AD ,再由EF ≥AD 得到AD •EF ≥AD 2,∴AD •EF >S 四边形AEDF ,所以③错误;如果四边形AEDF 为平行四边形,则AD 与EF 互相平分,此时DF ∥AB ,DE ∥AC ,又D 为BC 中点,所以当E 、F 分别为AB 、AC 的中点时,AD 与EF 互相平分,从而判断⑤. 解:∵Rt △ABC 中,AB=AC ,点D 为BC 中点,∴∠C=∠BAD=45°,AD=BD=CD ,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF .在△AED 与△CFD 中,EAD C AD CD ADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ),∴AE=CF ,在Rt △ABD 中,2BC ==. 故①正确;设AB=AC=a ,AE=CF=x ,则AF=a-x .∵S △AEF =12AE •AF=12x (a-x )=-12(x-12a )2+18a 2,∴当x=12a时,S△AEF有最大值18a2,又∵14S△ABC=14×12a2=18a2,∴S△AEF≤14S△ABC.故②正确;EF2=AE2+AF2=x2+(a-x)2=2(x-12a)2+1 2 a2,∴当x=12a时,EF2取得最小值12a2,∴EF≥2a(等号当且仅当x=12a时成立),而AD=2a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=1 2 AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.点评:本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积,函数的性质等知识,综合性较强,有一定难度.4.(2012•肇庆)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.4.分析:(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出△ABC≌△BAD,即可证出BC=AD,(2)根据△ABC≌△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.证明:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵ AC=BD, AB=BA,∠ACB=∠ADB ,∴△ABC≌△BAD,∴BC=AD,(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.点评:本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.考点四:全等三角形开放性问题例5 (2012•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).思路分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵BD CDEDC FDB DE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.对应训练5.(2012•衡阳)如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.5.分析:首先由AF=DC可得AC=DF,再由BC∥EF根据两直线平行,内错角相等可得∠EFD=∠BCA,再加上条件EF=BC即可利用SAS证明△ABC≌△DEF.解:补充条件:EF=BC,可使得△ABC≌△DEF.理由如下:∵AF=DC,∴AF+FC=DC+FC,即:AC=DF,∵BC∥EF,∴∠EFD=∠BCA,在△EFD和△BCA中, EF=BC ∠EFD=∠BCA EF=BC ,∴△EFD≌△BCA(SAS).点评:此题主要考查了全等三角形的判定,关键是熟练掌握判定定理:SSS、SAS、ASA、AAS,HL.【聚焦山东中考】1.(2012•烟台)一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.1.85分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°-∠ADF-∠EDF=180°-100°-30°=50°,∴∠BMD=180°-∠B-∠MDB=180°-45°-50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.2.(2012•聊城)将一副三角板按如图所示摆放,图中∠α的度数是()A.75° B.90° C.105° D.120°2.分析:先根据直角三角形的性质得出∠BAE及∠E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.解答:解:∵图中是一副直角三角板,∴∠BAE=45°,∠E=30°,∴∠AFE=180°-∠BAE-∠E=105°,∴∠α=105°.故选C.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.3.(2012•德州)不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线 C.三角形的高 D.三角形的中位线3.分析:根据三角形的高、中线、角平分线的性质解答.解答:解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故选C.点评:本题考查了三角形的高、中线和角平分线,要熟悉它们的性质方可解答.4.(2012•济宁)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是()A.SSS B.ASA C.AAS D.角平分线上的点到角两边距离相等4.分析:连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.解:如图,连接NC,MC,在△ONC 和△OMC 中ON OM NC MC OC OC =⎧⎪=⎨⎪=⎩,∴△ONC ≌△OMC (SSS ),∴∠AOC=∠BOC ,故选A .点评:本题考查了全等三角形的性质和判定的应,主要考查学生运用性质进行推理的能力,题型较好,难度适中.5.(2012•滨州)如图,在△ABC 中,AB=AD=DC ,∠BAD=20°,则∠C= .5.40°分析:先根据等腰三角形的性质及三角形内角和定理可求出∠B 的度数,再根据三角形外角的性质可求出∠ADC 的度数,再由三角形内角和定理解答即可.解:∵AB=AD ,∠BAD=20°,∴∠B=18018020 22BAD ︒-∠︒-︒==80°, ∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC ,∴∠C=18018010022ADC︒-∠︒-︒==40°.点评:本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.6.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,使△ABC≌△DBE.(只需添加一个即可)6.∠BDE=∠BAC分析:根据∠ABD=∠CBE可以证明得到∠ABC=∠DBE,然后根据利用的证明方法,“角边角”“边角边”“角角边”分别写出第三个条件即可.解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用“角边角”,需添加∠BDE=∠BAC,②用“边角边”,需添加BE=BC,③用“角角边”,需添加∠ACB=∠DEB.故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)点评:本题考查了全等三角形的判定,根据已知条件有一边与一角,根据不同的证明方法可以选择添加不同的条件,需要注意,不能使添加的条件符合“边边角”,这也是本题容易出的地方.7.(2012•临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.7.3分析:根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC 和△FEC全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC-CE,代入数据计算即可得解.解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中,∠ECF=∠B EC=BC ∠ACB=∠FEC=90°,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC-CE,BC=2cm,EF=5cm,∴AE=5-2=3cm.故答案为:3.点评:本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.8.(2012•济宁)如图,在等边三角形ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则tan∠AEO= .8分析:根据等边三角形性质和三线合一定理求出∠BAF=30°,推出AB=AE,根据SAS证△BAO ≌△EAO,推出∠AEO=∠ABO=30°即可.解答:解:∵△ABC是等边三角形,∠ABC=60°,AB=BC,∵BF⊥AC,∴∠ABF=12∠ABC=30°,∵AB=AC,AE=AC,∴AB=AE,∵AO平分∠BAE,∴∠BAO=∠EAO,∵在△BAO和△EAO中∵ AB=AE,∠BAO=∠EAO, AO=AO ,∴△BAO≌△EAO,∴∠AEO=∠ABO=30°,∴tan∠AEO=tan30°三角函数值等知识点的应用,关键是证出∠AEO=∠ABO,题目比较典型,难度适中.【备考真题过关】一、选择题1.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40° B.45° C.50° D.55°1.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解:∵∠B=67°,∠C=33°,∴∠BAC=180°-∠B-∠C=180°-67°-33°=80°∵AD是△ABC的角平分线,∴∠CAD=12∠BAC=12×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.2.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150° B.210° C.105° D.75°2.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.(2012•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45° B.60° C.75° D.90°3.分析:根据直角三角形的两锐角互余求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:如图,∠1=90°-60°=30°,所以,∠α=45°+30°=75°.故选C.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.4.(2012•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.164.分析:设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.点评:本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.5.(2012•郴州)以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cm C.5cm,6cm,12cm D.2cm,3cm,5cm5.分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3=5,不能组成三角形.故选B.点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.(2012•玉林)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对 B.6对 C.8对 D.10对6.分析:根据菱形四边形等,对角线互相垂直且平分,结合全等三角形的判定即可得出答案.解:图中全等三角形有:△ABO ≌△ADO 、△ABO ≌△CDO ,△ABO ≌△CBO ;△AOD ≌△COD ,△AOD ≌△COB ;△DOC ≌△BOC ;△ABD ≌△CBD ,△ABC ≌△ADC ,共8对.故选C .点评:此题考查了全等三角形的判定及菱形的性质,注意掌握全等三角形的几个判定定理,在查找时要有序的进行,否则很容易出错.7.(2012•贵阳)如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF7.分析:全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E ,只要求出∠B=∠E 即可. 解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC ≌△DEF ,故本选项错误;B 、∵在△ABC 和△DEF 中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),故本选项正确;C 、∵BC ∥EF ,∴∠F=∠BCA ,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC ≌△DEF ,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC ≌△DEF ,故本选项错误.故选B .点评:本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.三、填空题8.(2012•呼和浩特)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .8.66.5°分析:根据三角形内角和定理、角平分线的定义以及三角形外角定理求得12∠DAC+12ACF=12(∠B+∠B+∠BAC+∠BCA)=2272;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=12∠DAC,∠ECA=12∠ACF;又∵∠B=47°(已知),∠B+∠BAC+∠BCA=180°(三角形内角和定理),∴12∠DAC+12ACF=12(∠B+∠ACB)+12(∠B+∠BAC)=12(∠B+∠B+∠BAC+∠BCA)=2272(外角定理),∴∠AEC=180°-(12∠DAC+12ACF)=66.5°;故答案是:66.5°.点评:本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.9.(2012•娄底)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE= 度.9.56分析:先根据平行线的性质得出∠NOE=∠FEO,再根据角平分线的性质得出∠NOE=∠EOF,由三角形外角的性质即可得出结论.解:∵FE∥ON,∠FEO=28°,∴∠NOE=∠FEO=28°,∵OE平分∠MON,∴∠NOE=∠EOF=28°,∵∠MFE是△EOF的外角,∴∠MFE=∠NOE+∠EOF=28°+28°=56°.故答案为:56.点评:本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.10.(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= 度.10.50分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=12∠ACE=12×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.11.(2012•绥化)若等腰三角形两边长分别为3和5,则它的周长是.11.11或13分析:题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.(2012•柳州)如图,在△ABC 中,BD 是∠ABC 的角平分线,已知∠ABC=80°,则∠DBC= °.12.40分析:根据角平分线的性质得出∠ABD=∠DBC 进而得出∠DBC 的度数.解答:解:∵BD 是∠ABC 的角平分线,∠ABC=80°,∴∠DBC=∠ABD=12∠ABC=12×80°=40°, 故答案为:40.点评:此题主要考查了角平分线的性质,根据角平分线性质得出∠ABD=∠DBC 是解题关键.13.(2012•绵阳)如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件 为 .(答案不唯一,只需填一个).13.AC=CD分析:根据∠1=∠2,求出∠BCA=∠ECD ,根据SAS 证明亮三角形全等即可.解答:解:添加的条件是AC=CD ,理由是:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA ,∴∠BCA=∠ECD ,∵在△ABC 和△DCE 中BC CE BCA ECD AC CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCE ,故答案为:AC=CD .点评:本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力,本题题型较好,是一道具有开放性的题目,答案不唯一.三、解答题14.(2012•铜仁地区)如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.14.考点:全等三角形的判定.专题:证明题.分析:首先利用平行线的性质得出∠AED=∠CFB,进而得出DE=BF,利用SAS得出即可.证明:∵AE∥CF∴∠AED=∠CFB,∵DF=BE,∴DF+EF=BE+EF,即DE=BF,在△ADE和△CBF中,AE=CF ∠AED=∠CFB DE=BF,∴△ADE≌△CBF(SAS).点评:此题主要考查了全等三角形的判定,利用两边且夹角对应相等得出三角形全等是解题关键.15.(2012•赤峰)如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.15.分析:(1)以A为圆心,以任意长为比较画弧,分别交AB和AC于一点,分别以这两点为圆心,以大于这两点之间的距离为半径画弧,两弧交于一点,过这点和A作射线,交BC 于D,则,AD为所求;(2)推出∠BAE=∠CAE,根据SAS证△BAE和△CAE全等即可.(1)解:如图所示:(2)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠ABC=∠ACB,∴AB=AC,∵在△ABE和△ACE中AB=AC ∠BAE=∠CAE AE=AE ,∴△ABE≌△ACE(SAS).点评:本题考查了等腰三角形的判定,全等三角形的判定,作图-基本作图的应用,主要考查学生的动手操作能力和推理能力.16.(2012•重庆)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.16.分析:由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC ≌△AED,再根据全等三角形对应边相等可得BC=ED.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中:∠B=∠E,AB=AE,∠BAC=∠EAD,∴△ABC≌△AED(ASA),∴BC=ED.点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.1.(2012•扬州)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.2.(2012•镇江)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.3.(2012•佛山)如图,已知AB=DC,DB=AC(1)求证:∠ABD=∠DCA.注:证明过程要求给出每一步结论成立的依据.(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?4.(2012•滨州)如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.(1)求证:△ADF≌△CBE;(2)求正方形ABCD的面积;(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.×2×1+1×1(5.(2012•长春)感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F 在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为 6 .。
第17讲 等边三角形知识导航1.等边三角形三个内角均为60°. 2.等边三角形三条边相等. 3.直角三角形中,30°角所对的直角边等于斜边的一半. 4.三个角都相等的三角形是的等边三角形. 5.有一个角为60°的等腰三角形是等边三角形.【板块一】 等边三角形的性质方法技巧(1)运用等边三角形角的数量特征和边的相等关系解题.(2)共顶点的两个等边三角形(也称手拉手图形)组成的图中,必定有全等三角形.题型利一 与等边三角形有关的角度的计算.【例1】如图,△ABC 是等边三角形,CD ⊥BC ,CD =BC ,求∠DAC 和∠ADB 的度数.AD题型二 共顶点的等边三角形(手拉手图形)【例2】如图,点D 是等边△ABC 的边AB 上一点,以CD 为一边,向上作等边△EDC ,连接AE . (1)求证:△DBC ≌△EAC ; (2)求证:AE ∥BC .B【例3】如图,△ABC 和△CDE 都是等边三角形,点E 在BC 上,AE 的延长线交BD 于点F . (1)求证:AE =BD ; (2)求∠AFB 的度数; (3)求证:CF 平分∠AFD ;(4)直接写出EF ,DF ,CF题型三 【例4】如图,,点A (-2,0),B (2,0y 轴正半轴上一点,且∠ODB =30°,延长DB 至E ,使x 轴正半轴上一动点(点P 在点C 的右边),点M 在EP =60°,AM交BE 于点N .(1)求证:BE =BC ;(2)求证:∠ANB =∠EPC ;(3)当点P 运动时,求BP -BN 的值.D E针对练习11.如图,等边△ABC 中,点D ,E 分别在边AB ,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B’处,DB ’,EB ’分别交AC 于点F ,G ,若∠ADF =80°,求∠EGC 的度数.B'B2.如图,△ABD 和△ACE 都是等边三角形, DC 于BE 交于点M . (1)求证:BE =CD ;(2)求∠AMD 的度数.3.如图1,等边△ABC 中,点D 是AB 上一点,以CD 为一边,向上作等边△EDC ,向下作等边△DCF ,连接AE ,BF .(1)求证:AB =AE +BF ;(2)当点D 在BA 延长线上时,如图2,若AE =10,BF =4,求AC 的长.B图1 图24.已知点D ,E 分别是等边△ABC 的边BC ,AB 上的点,∠ADE =60°. (1)如图1,当点D 是BC 的中点时,求证:AE =3BE ; (2)如图2,当点M 在AC 上,满足∠ADM =60°,求证:BE =CM ;(3)如图3,过C 作CF ∥AB 交ED 延长线于点F ,探究线段BE ,CF ,CD 之间的数量关系,并给出证明.BCBCBC图1 图2 图35.在平面直角坐标系中,已知点A 在y 轴的正半轴上,点B 在第二象限,AO =a ,AB =b ,BO 与x 轴正方向的夹角150°,且220a -b a-b . ⑴判断△ABO 的形状;⑵如图1,若BC ⊥BO ,BC =BO ,点D 为CO 的中点,AC 、BD 交于点E ,求证:AE = BE +CE ;图 1⑶如图2,若点E 为y 轴的正半轴上一动点,以BE 为边作等边△BEG ,延长GA 交x 轴于点P ,AP 与AO 之间有何数量关系?试证明你的结论.图 26.△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0),B (b ,0),且a ,b 满足230a+ . (1)如图1,求点A ,B 的坐标及CD 的长;图 1(2)如图2,P是AB的延长线上一点,点E是CP右侧一点,CP=PE,且∠CPE=60°,连接EB,求证:直线EB必过点D关于x轴对称的对称点;(3)如图3,若点M在CA的延长线上,点N在AB的延长线上,且∠CMD=∠DNA,求AN-AM的值.【板块二】60°角的用法◆方法技巧◆合理利用60°角构造等边三角形得到相等线段,再进行推理.题型一过60°角一边上一点作平行线构造等边三角形.方法技巧:过60°角一边上一点,作平行线构造等边三角形,转化边与角.【例5】如图,△ABC是等边三角形,点D是AC的中点,点E,F分别在BC,AB的延长线上,∠EDF=120°.(1)求证:DE=DF;(2)若AB=5,求CE-BF的值.A题型二 在60°角的两边上截取两条相等线段构造等边三角形 方法技巧:在60°角的边上截取两条相等线段后构成等边三角形,然后产生新的全等三角形,从而找到解决问题的突破口.【例6】如图,△ABC 为等边三角形,∠ADB =60°. (1)如图1,当∠DAB =90°时,直接写出DA ,DC ,DB 之间的数量关系_______;图 1ABCD(2)如图2,当∠DAB ≠90°时,①中的关系式是否成立?说明理由.图 1ABCD题型三 利用60°角的一边上的点向另一边做垂线构造30°,60°,90°的直角三角形 方法技巧:利用30角所对的直角边等于斜边的一半,作高. 【例7】如图,在△ABC 中,∠B =60°,∠C =45°,AB =2,BC =1 ,求△ABC 的面积.ABC題型四 利用60°角延长构造等边三角形方法技巧;向外延长60”角的一边,在外部构造等边三角形.【例8】已知点D ,点E 分別等边△ABC 边BC ,AC 上的点,CD =AE ,AD 与BE 交于点F .(1)如图1,求∠AFE 的度数;图 1BCAD(2)点G 边AC 中点,∠BFG =120° ,如图2,求证:AF =2FG .图 2BCAD针对练习21.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,求AP 的长.ABCP2.如图.在等边△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,且OD ∥AB ,OE ∥AC . (1)试判定△ODE 的形状,并说明你的理由;(2)线段BD ,DE ,EC 三者有什么关系?请说明理由.E DBCA3.点D 为BC 上任一点,∠ADE =60°,边ED 与∠ACB 外角的平分线交于点E ,求证:AD =DE ;BCAD4.已知△ABC 是边长为5的等边三角形.(1)如图1,若点P 是BC 上一点,过点C ,点P 分别作AB ,AC 的平行线,两线相交于点Q ,连接BQ ,AP 的延长线交BQ 于点D .试问:线段AD ,BD ,CD 之间是否存在某种确定的数量关系?若存在,请写出它们之间数量关系并证明你的结论;若不存在,说明理由;图 1QBCA(2)如图2,若点P 是BC 延长线上一点,连接AP ,以AP 为边作等边△APE (点E 、点A 在直线BC 同侧),连接CE 交AP 于点F ,求CE -CP 的值.图 2BCDE5.如图,在△ABC 中,∠BAC =60°,以BC 为边在△ABC 的同侧作等边△DBC ,BD ,AC 相交于点E ,连结AD .(1)如图1,若A 2ACAB,求证:△ABC ≌△ADC图 1CA(2)如图2,若3AC AB,求ABAD的值. 图 2CAD6.如图1,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE =BD ,连接CE 、DE . ⑴求证:EC =ED ;图 1BDE⑵如图2,EO ⊥CD 于点O ,点N 在EO 上,△DNM 为等边三角形,CM 交EO 于F ,若FO =1,求FM -FN 的值.图 1BDE7.如图1,△ABC 是等边三角形,点D 是AB 中点,点E 在BC 上,△DEF 为等边三角形,图 1BCE(1)当点E 为BC 中点时,直接写出FE 与FC 的数量关系为_______________. (2)当点E 不为BC 中点时,(1)结论还是否成立?请说明理由; (3)如图2,当∠DAF =90°时,求证:BE =3EC .图 2BCAE[板块三) 30°角的用法方法技巧 构造30°角的直角三角形,算边长与面积. 题型一 已知30°角连线巧得隐直角.【例9】如图,在△ABC 中,AB =AC ,∠C =30°,AB 的垂直平分线交AB 于点D ,交BC 于点E ,试探究BE 与CE 之间的数量关系.BC题型二 利用30°作高构造直角三角形.【例10】如图,CD 是△ABC 的中线,CD ⊥CB ,∠ACD =30°,求证:AC =2BC.DABC题型三 已知30°和90°角补形构造直角三角形 【例11】如图,四边形ABCD 中,∠C =30°,∠B =90°,∠ADC =120°,若AB =2,CD =8,求AD 的长.ACBD题型四 利用底角为15°的等腰三角形构造30°角的直角三角形 【例12】如图,∠AOC =15°,OC 平分∠AOB ,点P 为OC 上一点,PD /∥OA 交OB 于点D ,PE ⊥OA 于点E ,若OD =4cm ,求PE 的长.EOA题型五 利用150°构造30°角的直角三角形【例13】如图,在△ABC 中,AB =AC ,点D 为BC 上一点,以AD 为腰作等腰△ADE ,且AD =AE ,∠BAC =∠DAE =30°,连接CE ,若BD =2,CD =5,求△DCE 的面积.BCAD E题型六30°直角三角形斜边上的高 方法技巧:30°角的直角三角形斜边上的高中,有3个30°的直角三角形,选取最小的和最大的两个直角三角形进行计算.【例14】如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,∠A =30°,AD =6,求BC 的长.DABC针对练习31.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米的售价为a 元,求购买这种草皮至少需要多少元?BCA2.在△ABC 中,∠B =30°,AB =AC =8,P 为BC 上一点,求AP 的最小值.ABCP3.如图,在等边△ABC 中,点D 为AC 上一点,CD =CE ,∠ACE =60°. (1)求证:△BCD ≌△ACE ;图 1EBCA(2)延长BD 交AE 于点F ,连接CF ,若AF =CF ,猜想线段BF ,AF 的数量美系,并证明你的猜想.图 2BCAE4.如图,在△ABC 中,∠BAC =90°,点D 为三角形内一点,且AB =AC =BD ,∠ABD =30°.求证:AD =CD ,AB C5.如图,在△ABC 中,∠ABC =45°,∠BAC =60°,点D 为BC 上一点,∠ADC =60°,AE ⊥BC ,CF ⊥AD ,垂足分别为E 、F ,AE 、CF 相交于点H .ECBAD(1)求证:△DFC ≌△HFA ;(2)若DF =2,AF EH 的值.6.如图1,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 分别交BC ,AB 于点M ,N . (1)求证:CM =2BM ;BC(2)如图2,点F 为AB 上方一点,连接BF ,AF ,CF ,点B 关于直线AF 的对称点E 在CF 上,连接BE . 求证:△BEF 为等边三角形.B AFC。
直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.【答案及解析】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°在Rt△ABD 和Rt△CDB中,∴Rt△ABD≌Rt△CDB(HL)∴AB=CD(全等三角形对应边相等)(2)由∠ADB=∠CBD∴AD∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【答案】证明:∵AE⊥AB,BC⊥AB,∴∠DAE=∠CBA=90°在Rt△DAE 及Rt△CBA中,∴Rt△DAE≌Rt△CBA (HL)∴∠E=∠CAB∵∠CAB+∠EAF=90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED⊥AC.2、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案及解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 及Rt △BCD 中,∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC=⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案及解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 及△CBE 中,∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参及,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,AB=AC,AD⊥ BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt△ABC及Rt△'''A B C中, ∠C =∠'C= 90, A=∠'B, AB =''A B, 那么下列结论中正确的是( )A. AC =''B C D. ∠A C B.BC =''B C C. AC =''A =∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形()A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE 的依据是“______”.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC ≌_______.9. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC及右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B 点及O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上及AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.13.【解析】解:在Rt △AOB 及Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等)∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得: ∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 及Rt △EDF 中 B EDF BC DFC F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠2.证明:∵AE⊥EC,AF⊥BF,∴△AEC、△AFB为直角三角形在Rt△AEC及Rt△AFB中∴Rt△AEC≌Rt△AFB(HL)∴∠EAC=∠FAB∴∠EAC-∠BAC=∠FAB-∠BAC,即∠1=∠2.【答案及解析】一、选择题1. 【答案】C;【解析】等腰直角三角形确定了两个锐角是45°,可由AAS定理证明全等.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF ≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C;【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】C;【解析】等底等高的两个三角形面积相等.6. 【答案】C;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD;【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】6;【解析】DB=DC+CB=AB+ED=4+2=6;11.【答案】90°;【解析】通过HL证Rt△ABC≌Rt△DEF,∠BCA=∠DFE. 12.【答案】45°;【解析】证△ADC及△BDF全等,AD=BD,△ABD为等腰直角三角形.。
第十七讲三角形与全等三角形【重点考点例析】考点一:三角形三边关系例1 (2013•温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11思路分析:看哪个选项中两条较小的边的和不大于最大的边即可.解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9-4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.对应训练1.(2013•长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.81.B考点二:三角形内角、外角的应用例2 (2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°思路分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°-45°-120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.对应训练2.(2013•鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.A考点三:三角形全等的判定和性质例3 (2013•天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.思路分析:找到两三角形全等的条件,三角形全等就写出来,选择一组证明即可. 解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,理由如下:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,E C AE ACEAM CAN =⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CAN (ASA ).点评:本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.例4 (2013•宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD .思路分析:要证明BE=CD ,把BE 与CD 分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用AAS 可得出三角形ABE 与三角形ACD 全等,利用全等三角形的对应边相等可得证.证明:在△ABE 和△ACD 中,B C A A AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).点评:此题考查了全等三角形的判定与性质,常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.对应训练3.(2013•荆州)如图,△ABC 与△CDE 均是等腰直角三角形,∠ACB=∠DCE=90°,D 在AB 上,连结BE .请找出一对全等三角形,并说明理由.3.解:△ACE ≌△BCD .∵△ABC 和△ECD 都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD (都是∠ACD 的余角),在△ACE 和△BCD 中,∵CE CD ACE BCD CA CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD .4.(2013•十堰)如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BD=CE .求证:AD=AE .4.证明:∵AB=AC ,∴∠B=∠C ,在△ABD 与△ACE 中,∵AB AC B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴AD=AE .考点四:全等三角形开放性问题例5 (2013•云南)如图,点B 在AE 上,点D 在AC 上,AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.思路分析:(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS”,可以添加∠C=∠E ,若利用“ASA”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC ); 故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:在△ABC 和△ADE 中,A A C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ).点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.对应训练【聚焦山东中考】1.(2013•威海)将一副直角三角板如图摆放,点C 在EF 上,AC 经过点D .已知∠A=∠EDF=90°,AB=AC .∠E=30°,∠BCE=40°,则∠CDF= .1.25°2.(2013•聊城)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .2.证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△BCF ≌△CDE (AAS ),∴BF=CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE=BF ,3.(2013•菏泽)如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE=30°,求∠BDC 的度数.3.(1)证明:∵∠ABC=90°,D 为AB 延长线上一点,∴∠ABE=∠CBD=90°,在△ABE 和△CBD 中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBD (SAS );(2)解:∵AB=CB ,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°,∵△ABE ≌△CBD ,∴∠BCD=∠BAE=15°,∴∠BDC=90°-∠BCD=90°-15°=75°;4.(2013•临沂)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.4.(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD ,在△AFE 和△DBE 中AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ),∴AF=BD ,∴AF=DC .(2)四边形ADCF 是菱形,证明:∥BC ,AF=DC ,∴四边形ADCF 是平行四边形,∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD=DC ,∴平行四边形ADCF 是菱形.5.(2013•东营)(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD ,∵在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE ;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD ,∵在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE ;(3)由(2)知,△ADB ≌△CEA ,BD=AE ,∠DBA=∠CAE ,∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵BF=AF在△DBF 和△EAF 中FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△EAF (sas ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.6.(2013•烟台)已知,点P 是直角三角形ABC 斜边AB 上一动点(不与A ,B 重合),分别过A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 为斜边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系式 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA (或AB )的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.6.解:(1)AE ∥BF ,QE=QF ,理由是:如图1,∵Q 为AB 中点,∴AQ=BQ ,∵BF ⊥CP ,AE ⊥CP ,∴BF ∥AE ,∠BFQ=∠AEQ ,在△BFQ 和△AEQ 中BFQ AEQBQF AQE BQ AQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFQ ≌△AEQ (AAS ),∴QE=QF ,故答案为:AE ∥BF ,QE=QF .(2)QE=QF ,证明:如图2,延长FQ 交AE 于D ,∵AE ∥BF ,∴∠QAD=∠FBQ ,在△FBQ 和△DAQ 中FBQ DAQAQ BQ BQF AQD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBQ ≌△DAQ (ASA ),∴QF=QD ,∵AE ⊥CP ,∴EQ 是直角三角形DEF 斜边上的中线,∴QE=QF=QD ,即QE=QF .(3)(2)中的结论仍然成立,证明:如图3,延长EQ 、FB 交于D ,∵AE ∥BF ,∴∠1=∠D ,在△AQE 和△BQD 中123D AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AQE ≌△BQD (AAS ),∴QE=QD ,∵BF ⊥CP ,∴FQ 是斜边DE 上的中线,∴QE=QF .【备考真题过关】一、选择题1.(2013•泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形1.D2.(2013•宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,42.D3.(2013•衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3.C4.(2013•河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远4.C5.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.C6.(2013•台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确6.A7.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC7.A8.(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°8.B9.(2013•陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对9.C二、填空题10.(2013•黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.10.6011.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .11.2012.(2013•巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)12.CA=FD13.(2013•郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,13.∠B=∠C (答案不唯一)14.(2013•达州)如图,在△ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.14.20132m三、解答题15.(2013•玉林)如图,AB=AE ,∠1=∠2,∠C=∠D .求证:△ABC ≌△AED .15.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC ,即∠BAC=∠EAD ,∵在△ABC 和△AED 中,D C BAC EAD AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (AAS ).16.(2013•湛江)如图,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,求证:AC=DF .16.证明:∵FB=CE ,∴FB+FC=CE+FC ,∴BC=EF ,∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,∵在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ),∴AC=DF .17.(2013•佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS ;(2)证明推论AAS .要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.17.解:(1)三角形全等的判定方法中的推论AAS 指的是:两角及其中一角的对边对应相等的两个三角形全等.(2)已知:在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F ,BC=EF .求证:△ABC ≌△DEF .证明:如图,在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F (已知),∴∠A+∠C=∠D+∠F (等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),∴∠B=∠E .∵在△ABC 与△DEF 中,C F BC EF B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ).18.(2013•随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .18.解:不能;选择条件:①AB=DE ;∵BF=CE ,∴BF+BE=CE+BE ,即EF=CB ,在△ABC 和△DFE 中,AB DE ABC DEF EF CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ).19.(2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.证明:∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC ,CD=CE ,∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD ,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,AC BC ACE BCD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴BD=AE .20.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数?20.(1)证明:∵在△ABE 和△DCE 中A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS );(2)解:∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.21.(2013•荆门)如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC=45°,原题设其它条件不变.求证:△AEF ≌△BCF .21.证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠EAC ,在△ABE 和△ACE 中,AB AC BAE EAC AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵∠BAC=45°,BF ⊥AF ,∴△ABF 为等腰直角三角形,∴AF=BF ,∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF+∠C=90°,∵BF ⊥AC ,∴∠CBF+∠C=90°,∴∠EAF=∠CBF ,在△AEF 和△BCF 中,90EAF CBF AF BF AFE BFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AEF ≌△BCF (ASA ).。
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
第十七讲三角形与全等三角形【基础知识回顾】1、三角形的分类:按边可分为三角形和三角形,按角可分为三角形三角形三角形2、三角形的性质:●三角形的内角和是三角形的任意一个外角和它不相邻的两个内角的和,三角形的一个外角任意一个和它不相邻的内角●三角形任意两边之和第三边,任意两边之差第三边3、三角形中的主要线段:●角平分线:三角形的三条角平分线都在三角形部且交于一点,这点是三角形的心它到得距离相等●中线:三角形的三条中线都在三角形部,且交于一点●高线:不同三角形的三条高线位置不同,钝角三角形有一条高线在三角形部,两条在三角形部●中位线:连接三角形任意两边的线段叫做三角形的中位线。
定理:三角形的中位线第三边且等于第三边的4、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)、周长、面积分别对应5、全等三角形的判定:①边边边:简记为②边角边,简记为③角边角:简记为④角角边:简记为直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定【重点考点例析】考点一:三角形三边关系例1 已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12考点二:三角形内角、外角的应用例2 如图是一副三角板叠放的示意图,则∠α=______.考点三:三角形全等的判定和性质例3 如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=______.考点四:全等三角形开放性问题例4 如图,AC、BD相交于点0,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是_______(填出一个即可).【聚焦中考】1.已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC有()A.5个 B.4个 C.3个 D.2个2.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD 与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°3.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【备考真题过关】一、选择1.下列线段能构成三角形的是() A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6 2.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.1553.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85°B.80°C.75°D.70°4.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.12∠AFB D.2∠ABF5.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°6.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或87.如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20 B.30° C.70°D.80°8.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF ()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F9.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1C 的坐标为()A.(1)B.(-1 C1)D.(-1)二、填空题10.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是______.11.如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=_____12.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为______.13.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_____度.14.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为________.三、解答题15.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.16.已知:如图,点A、B、C在同一直线上,AB=CD,AE∥CF,且AE=CF.求证:∠E=∠F.17.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.18.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.19.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.20..(1)问题发现,如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE填空:(1)∠AEB的度数为;(2)线段BE之间的数量关系是。