史密斯预估控制
- 格式:ppt
- 大小:3.75 MB
- 文档页数:28
第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
过程控制工程作业史密斯预估控制系统仿真院系:信息工程学院专业:2012级自动化******学号:*******指导老师:张*中央民族大学史密斯补偿控制纯滞后补偿控制的基本思路是:在控制系统中某处采取措施(如增加环节,或增加控制支路等),使改变后系统的控制通道以及系统传递函数的分母不含有纯滞后环节,从而改善控制系统的控制性能及稳定性等。
1.纯滞后补偿的基本原理如下图1.1所示图1.1 纯滞后补偿基本原理图令增加补偿后的传递函数为:则得:()(1)()s p G s e G s -τ=-()p G s 即为消除滞后所采用的补偿函数通过图1.1所示附加并联环节()p G s 的补偿处理,在()X s 和()Y s 之间传递函数不再表现为滞后特性。
2.史密斯滞后补偿控制史密斯提出的补偿方案如图1.2所示,虚框线部分为smith 预估器。
图1.2 史密斯补偿控制系统方框图系统传递函数为:()()()e ()1()()c p s c p G s G s Y s X s G s G s -τ=+可见,经补偿后,传递函数特征方程中已消除时间滞后项,也就是消除了时滞对系统控制品质的影响。
3.史密斯补偿控制仿真史密斯补偿控制综合仿真实例。
采用史密斯补偿控制方法对恒温箱的恒温过程进行控制。
其中,输入为燃油量,输出为温度。
(1)建立系统数学模型利用系统识别方法,得到系统数学模型为:所以,系统Smith补偿控制方框图如图1.2所示。
图中代表控制调节器传递函数。
经补偿后广义被控对象为:(2)无调节器时,开环系统稳定性分析式(1-1)表示为广义被控对象的Bode图如图1.3所示。
[程序:Smith_1.m]图1.3 广义被控对象Bode图可见,广义被控对象开环稳定幅值裕量为无穷大,相角裕量为120。
(3)系统控制参数整定由图1.3可知系统采用比例控制时,取任何值构成的闭环系统均稳定。
所以,本被控对象不能采用稳定边界法整定边界法整定系统参数。
施密斯预估控制姓名:学号:班级:1 实验目的对大多数控制系统,采用常规的控制技术均可以达到满意的控制效果,但对于复杂及特殊要求的控制系统,采用常规的控制室技术很难达到目的,在这种情况下,就需要采用复杂控制技术,其中Smith 预估控制算法是常用的一种,通过本实验加深对Smith 预估控制算法的理解和掌握。
2 实验原理图1为被控对象具有纯滞后特性的单回路反馈控制系统,D (s )是控制器,被控对象的传递函数为etss -)(G p ,其中,)(G p s 为被控对象中不包含纯滞后部分的传递函数,ts-e为被控对象纯滞后部分的传递函数。
)(t r )(t e )(t u )(t y_施密斯预估原理:与D (s )并接一补偿环节,用来补偿被控对象中的纯滞后部分,这个补偿环节称为预估器,其传递函数为)1)((G p tse s --,t 为纯滞后时间,补偿后的系统结构如图2所示。
)(t r )(t e )(t u )(t y_ _)(t y τ由施密斯预估控制器)1)((G p tses --和控制器D (s )组成的回路陈伟纯滞后补偿器,)(s Ds e s τ-)(G p)(s Ds e s τ-)(G p)1)((G p ts e s --其传递函数为:)1)(()(1)()(D m s p e s G s D s D s τ--+=经过补偿后的系统闭环传递函数为:s p p sp m sp m e s G s D s G s D es G s D e s G s D τττ---+=+=Φ)()(1)()()()(1)()(s )(该式说明,进过补偿后,消除了之后部分对控制系统的影响,因为式中ts-e 在闭环控制回路之外,不影响系统的稳定性。
设广义被控对象为:1011()()()1Ts s se e H s G s G s es T sττ----==⋅+取T=1、τ=2、T 1=2.88,经采样(T=1s )保持后,其广义对象z 传递函数为00.2934()0.7066G z z =-,而2se -转换为2个单位迟延。
第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
东南大学能源与环境学院实验报告课程名称:实验名称:院(系):专业:姓名:杨康学号:实验室:实验组别:同组人员:实验时间:年月日评定成绩:审阅教师:目录一.实验目的 (3)二.实验内容 (3)三.实验步骤 (3)四.实验分析 (12)实验二 Smith预估控制实验指导书一实验目的通过实验掌握Smith预估控制的方法及程序编制及调试。
二实验内容1.Smith预估控制系统如图所示,图一对象G(S)= K·e-τs / (1+TS),K = 1, T1 = 10 s , τ = 5 s ,1Wc(z)采用数字PI控制规律。
2.对象扰动实验画出U(t) = u0·1(t)时,y(t)曲线。
3.Smith预估控制(1)构造Wτ(S),求出Wτ(Z)。
(2)整定Wc(s)(按什么整定?)(3)按图仿真,并打印曲线。
(4)改变Wτ(S)中K,τ(对象不变),进行仿真比较,观察它们对调节过程的影响。
三实验步骤1、对象扰动实验(1)差分方程如附录。
(2)源程序如下:#include"iostream.h"#include"math.h"#include"fstream.h"void main(){fstream outfile("data1.xls",ios::out);double t;double u0;cout<<"请输入采样周期:";cin>>t;cout<<"请输入阶跃幅值:";cin>>u0;double ee=pow(2.718,(-t/10.0));int N;int i;double u[100],y[100];for(i=0;i<100;i++){u[i]=u0;y[i]=0.0;}N=1+5/t;for(i=N;i<100;i++){y[i]=(1-ee)*u[i-N]+y[i-1]*ee;}for(i=0;i*t<100;i++){cout<<y[i]<<'\t';}for(i=0;i*t<100;i++){outfile<<i*t<<'\t';}outfile<<'\n';for(i=0;i*t<100;i++){outfile<<y[i]<<'\t';}outfile.close();}(3)输出结果:当采样周期T=1,阶跃幅值为1时:Y(t)输出数据:0 0 0 0 0 0 0.0951532 0.181252 0.259159 0.3296520.393438 0.451154 0.503379 0.550634 0.593392 0.6320820.667091 0.698768 0.727431 0.753367 0.776835 0.798070.817284 0.83467 0.850402 0.864637 0.877517 0.8891720.899717 0.909259 0.917894 0.925706 0.932776 0.9391720.94496 0.950197 0.954936 0.959224 0.963104 0.9666150.969792 0.972666 0.975267 0.97762 0.97975 0.9816770.98342 0.984998 0.986425 0.987717 0.988886 0.9899430.9909 0.991766 0.99255 0.993259 0.9939 0.99448 0.9950060.995481 0.995911 0.9963 0.996652 0.996971 0.9972590.99752 0.997756 0.997969 0.998162 0.998337 0.9984960.998639 0.998768 0.998885 0.998991 0.999087 0.9991740.999253 0.999324 0.999388 0.999446 0.999499 0.9995470.99959 0.999629 0.999664 0.999696 0.999725 0.9997510.999775 0.999796 0.999816 0.999833 0.999849 0.9998630.999876 0.999888 0.999899 0.999908 0.999917阶跃响应曲线如下:图二2、Smith预估控制(1)差分方程见附录:(2)源程序如下:#include"iostream.h"#include"math.h"#include"fstream.h"void main(){fstream outfile("data1.xls",ios::out);double t,kp,ki;int t1,k;cout<<"请输入Wt(s)中的K:";cin>>k;cout<<"请输入Wt(s)中的迟延时间t:";cin>>t1;cout<<"请输入采样周期:";cin>>t;cout<<"请输入PI调节器的参数kp:";cin>>kp;cout<<"请输入PI调节器的参数ki:";cin>>ki;double ee=pow(2.718,(-t/10.0));int N,N1;int i;double r[100],e1[100],e2[100],cm[100],q[100],u[100],y[100];for(i=0;i<100;i++){r[i]=1.0;e1[i]=0.0;e2[i]=0.0;u[i]=0.0;y[i]=0.0;cm[i]=0.0;q[i]=0.0;}N=1+5/t;N1=t1/t;cout<<N<<'\t'<<N1<<endl;for(i=0;i<100;i++){if(i==0){e1[i]=r[i];cm[i]=0;q[i]=0;e2[i]=e1[i]-q[i];u[i]=kp*e2[i]+ki*e2[i];}if(i>0&&i<N1){e1[i]=r[i]-y[i-1];cm[i]=ee*cm[i-1]+k*(1-ee)*u[i-1];q[i]=cm[i];e2[i]=e1[i]-q[i];u[i]=u[i-1]+kp*(e2[i]-e2[i-1])+ki*e2[i];if(i>=N){y[i]=(1-ee)*u[i-N]+y[i-1]*ee;}}if(i>=N1){e1[i]=r[i]-y[i-1];cm[i]=ee*cm[i-1]+k*(1-ee)*u[i-1];q[i]=cm[i]-cm[i-N1];e2[i]=e1[i]-q[i];u[i]=u[i-1]+kp*(e2[i]-e2[i-1])+ki*e2[i];if(i>=N){y[i]=(1-ee)*u[i-N]+y[i-1]*ee;}}}for(i=0;i*t<100;i++){cout<<y[i]<<'\t';}for(i=0;i*t<100;i++){outfile<<i*t<<'\t';}outfile<<'\n';for(i=0;i*t<100;i++){outfile<<y[i]<<'\t';}outfile.close();}(3)输出结果:以下所涉及到的采样周期均为T=1,PI控制器的参数均为Kp=1,Ki=1;当Smith预估器中的K=1,延迟时间τ=5时(即与对象的特性完全符合):Y(t)输出数据:0 0 0 0 0 0 0.190306 0.421441 0.663641 0.8917551.08676 1.23639 1.37128 1.47104 1.5311 1.549551.52761 1.46956 1.38931 1.29344 1.18983 1.085670.987246 0.89981 0.828799 0.776983 0.745653 0.7345240.741955 0.765251 0.801257 0.846217 0.896223 0.947450.996402 1.04011 1.07631 1.1035 1.1209 1.12848 1.126831.11708 1.10079 1.07973 1.05581 1.03093 1.00680.984919 0.966463 0.952253 0.942744 0.938032 0.937890.941816 0.949101 0.958895 0.970279 0.982333 0.9941951.00511 1.01448 1.02186 1.02698 1.02978 1.030321.02882 1.02561 1.02108 1.01569 1.00987 1.004060.998627 0.993893 0.990086 0.98735 0.985745 0.9852490.985771 0.987163 0.989238 0.991783 0.994581 0.997421.00011 1.0025 1.00445 1.0059 1.0068 1.00715 1.0071.00641 1.00547 1.00428 1.00293 1.00155 1.000220.999027 0.998028 0.997269 0.996773扰动曲线如下:图三当Smith预估器中的K=1,延迟时间τ=2时(即与对象的特性不完全符合):Y(t)输出数据如下:0 0 0 0 0 0 0.190306 0.421441 0.663641 0.9279711.21095 1.50619 1.810532.08577 2.31463 2.489892.60123 2.63889 2.59562 2.46564 2.25095 1.958931.59989 1.18774 0.740093 0.277571 -0.176632 -0.598368-0.963966 -1.25121 -1.44044 -1.51579 -1.4662 -1.28642-0.977633 -0.547714 -0.0112532 0.610765 1.29164 1.999962.700933.358 3.934554.39588 4.71103 4.854644.80862 4.56351 4.11952 3.48712 2.68715 1.750360.716479 -0.367272 -1.44817 -2.47036 -3.37751 -4.11571-4.63639 -4.89916 -4.87439 -4.54543 -3.91026 -2.98249-1.79168 -0.38278 1.18524 2.8415 4.5062 6.09408 7.518558.69603 9.55045 10.0176 10.0494 9.61689 8.713477.35632 5.58704 3.47109 1.09587 -1.43244 -3.99312-6.45626 -8.68888 -10.5616 -11.9554 -12.7687 -12.9234-12.3704 -11.0941 -9.11507 -6.49149 -3.31832 0.2752394.13026 8.06445 11.88 15.3731 18.3435扰动曲线如下:图四当Smith预估器中的K=2,延迟时间τ=2时(即与对象的特性不完全符合):Y(t)输出数据如下:0 0 0 0 0 0 0.190306 0.385225 0.546344 0.7250840.920371 1.11455 1.30834 1.46909 1.59338 1.692661.7608 1.79027 1.78227 1.73766 1.66147 1.560211.43778 1.29949 1.15302 1.00558 0.863901 0.7341210.621319 0.529913 0.463425 0.423874 0.411896 0.4269230.467201 0.529943 0.611457 0.707298 0.812552 0.9221031.03084 1.13389 1.22683 1.30585 1.36793 1.410941.4337 1.43598 1.41848 1.38278 1.33121 1.266721.19274 1.11298 1.03127 0.951381 0.876845 0.8108160.75594 0.714253 0.687116 0.675179 0.67838 0.6959770.726605 0.768367 0.818936 0.875681 0.935797 0.9964341.05484 1.10845 1.15505 1.19281 1.22037 1.236891.24206 1.23609 1.21971 1.19405 1.16064 1.12131.07804 1.03296 0.988182 0.945705 0.907359 0.8747110.849012 0.831146 0.82161 0.820506 0.82755 0.8421020.863208 0.889656 0.920041 0.952835 0.986462 1.01937扰动曲线如下:图五四实验分析当系统是特征方程中含有纯迟延项的时候,系统的闭环稳定性事下降的,当迟延时间τ比较大的时候,系统就会不稳定。
(此文档为word格式,下载后您可任意编辑修改!)扬州大学水利与能源动力工程学院课程设计报告题目:史密斯预估控制系统设计课程:计算机控制技术课程设计专业:电气工程及其自动化班级:电气1101姓名:学号:第一部分任务书《计算机控制技术》课程设计任务书一、课题名称史密斯预估控制系统设计二、课程设计目的课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。
《计算机控制技术》是一门理论性、实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。
计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。
通过课程设计,加深对学生控制算法设计的认识,学会控制算法的实际应用,使学生从整体上了解计算机控制系统的实际组成,掌握计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的调试工作打下基础。
三、课程设计内容设计以89C51单片机和ADC 、DAC 等电路、由运放电路实现的被控对象构成的计算机单闭环反馈控制系统。
1. 硬件电路设计:89C51最小系统加上模入电路(用ADC0809等)和模出电路(用TLC7528和运放等);由运放实现的被控对象。
2. 控制算法:PID 控制加史密斯预估控制。
3. 软件设计:主程序、中断程序、A/D 转换程序、滤波程序、PID 控制加史密斯预估控制程序、D/A 输出程序等。
四、课程设计要求1. 模入电路能接受双极性电压输入(-5V~+5V ),模出电路能输出双极性电压(-5V~+5V )。
2. 模入电路用两个通道分别采集被控对象的输出和给定信号。
3. 每个同学选择不同的被控对象:5100.5 1.5(),()(1)(0.81)(1)(0.41)s s G s e G s e s s s s --==++++8810.5(),()(0.81)(0.41)(0.41)(0.51)s s G s e G s e s s s s --==++++581.52(),()(1)(0.21)(0.81)(0.21)s s G s e G s e s s s s --==++++ 5512(),()(0.81)(0.31)(0.81)(0.21)s s G s e G s e s s s s --==++++ 4. 对象的纯延迟环节用软件通过数组单元移位实现。
第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
教学模块4数字控制器的模拟化设计方法教学单元4 Smith预估控制教学单元4Smith预估控制◆纯滞后问题的提出◆Smith预估控制设计原理◆Smith预估控制算法的工程化改进4.1 纯滞后问题的提出h r —出口厚度基准值;h —出口厚度实际值;—出口厚差;—辊缝调节量。
h ∆S ∆ 实例:轧制过程的纯滞后现象测厚仪式带钢厚度控制系统原理图压下执行机构控制器h r +-h射线式测厚仪轧机带钢h∆S∆带钢运行时间——纯滞后时间τ测厚仪式厚度自动控制系统的不稳定现象:h r轧机板带钢测厚仪ABCDE F——纯滞后时间——对象的主导时间常数τm T 3.0/≥m T τ——具有大滞后或大迟延的工艺过程5.0/≥m T τ——采用常规的PID 控制会使系统稳定性变差,甚至产生振荡4.1 纯滞后问题的提出系统的闭环传递函数为:sp s p B es W s D es W s D s W ττ--+=)()(1)()()( 纯滞后对系统稳定性影响的理论分析4.1 纯滞后问题的提出有纯滞后环节的常规反馈控制系统+-y (t )u (t )r (t )y p (t ))(s W p seτ-D (s )◆系统特征方程为:)()(1=+-sp es W s D τ因此,系统纯滞后大时,系统性能变差,甚至不稳定。
◆时滞环节的相频特性为:τωωϕτ-=)(0ω)(ωϕτ4.1 纯滞后问题的提出4.2 Smith预估控制设计原理Smith预估控制——美国学者O.J.M.Smith于1957年创立,建立在模型基础上的一种控制策略。
◆有纯滞后环节的常规反馈控制系统+-y(t) u(t)r(t)y p(t))(sWps eτ-D(s)◆反馈回路的期望配置+-y(t) u(t)r(t)y p(t))(sWps eτ-D(s)(1)Smith预估器的设计思想◆初步的Smith 预估控制方案+-y (t )u (t )r (t )y p (t ))(s W p se τ-D (s )y m 1(t ))(1s W m sm eτ-y m (t )对象预估模型◆完整的Smith 预估控制方案+-y (t )u (t )r (t )y p (t ))(s W p se τ-D (s )y m 1(t ))(1s W m s m eτ-y m (t )+-e m (t )+-(1)Smith 预估器的设计思想◆Smith 预估器的传递函数为:)1)(()()()(1sm m e s W s U s Y s D τ--='='◆系统闭环传递函数为:11()()()1()()()()()()m s p B ssm p m D s W s eW s D s W s D s W s eD s W s eτττ---=++-(2)Smith 预估控制系统的稳定性分析◆等效的Smith 预估控制方案y (t )+-u (t )r (t )y p (t ))(s W p seτ-D (s )y m 1(t ))(1s W m sm eτ-y m (t )+-Smith 预估器)(t y '+-◆系统特征方程为:111()()()()()()0m ssm p m D s W s D s W s eD s W s eττ--++-=◆若)()(1s W s W p m =ττ=m ◆则系统特征方程变为:)()(1=+s W s D p 特征方程中纯滞后环节消失,Smith 预估控制有效地解决了纯滞后系统的稳定性问题(2)Smith 预估控制系统的稳定性分析(3)数字Smith 预估控制系统的设计 由计算机实现的Smith 预估控制系统y (t )+-u (k )r (k )sp es W τ-)(D (z )y m 1(t ))(1s W m sm eτ-y m (t )+-Smith 预估器)(t y '+-sesτ--1e (k ))(k e '零阶保持器TT具体设计步骤如下:(1)计算反馈回路偏差()()()e k r k y k =-PID y (k )(3)数字Smith 预估控制系统的设计(2)计算Smith 预估器的输出设被控对象为具有较大纯滞后的一阶惯性环节()y k 'Smith 预估器传递函数为)1(1)1)(()()()(1NTsm m s m e sT K e s W s U s Y s D m---+=-='='τNTm ==ττsp p sp e sT K es W s W ττ--+==1)()(对象预估模型sm m sm m mm e sT K es W s W ττ--+==1)()(1(3)数字Smith 预估控制系统的设计Smith )1(1)1)(()()()(1NTsm m s m e sT K e s W s U s Y s D m ---+=-='='τ[])()()()(NT t u t u K t y dtt y d T m m--='+'Smith 预估器的差分方程[]()(1)(1)((1))m mm mT TK y k y k u k u k N T T T T ''=-+---+++Smith 预估器的微分方程拉氏反变换反向差分代替微分a b)1()(-=k u t u ?[]()(1)(1)((1))y k ay k b u k u k N ''=-+---+——Smith 预估器的数字算法(3)数字Smith 预估控制系统的设计y (t )+-u (k )r (k )sp es W τ-)(D (s )y m 1(t ))(1s W m sm eτ-y m (t )+-Smith 预估器)(t y '+-se sτ--1e (k ))(k e '零阶保持器TT)1()(-=k u t u ?(3)计算PID 的输入偏差()()()e k e k y k ''=-(4)计算数字PID 的输出[][]()(1)()(1)()(1)() ()2(1)(2)p i d u k u k u k u k K e k e k K e k K e k e k e k =-+∆'''=-+--+'''+--+-PID(4)Smith 预估控制存在的问题完整的Smith 预估控制方案+-y (t )u (t )r (t )y p (t ))(s W p se τ-D (s )y m 1(t ))(1s W m s m eτ-y m (t )+-e m (t )+-系统闭环传递函数为11()()()1()()()()()()m s p B ssm p m D s W s eW s D s W s D s W s eD s W s eτττ---=++-◆对模型误差十分敏感◆扰动对系统造成影响依然存在4.3 Smith 预估控制算法的工程化改进Y (s )+-R (s ))(s W p seτ-)(1s W m sm eτ-+-+-D (s )+-N 1(s )N 2(s ))(s W f ∙新增环节(1)Smith 预估器的完全抗干扰改进Smith 预估控制存在的问题⎩⎨⎧存在扰动对系统的影响依然对模型误差十分敏感假设建立的对象模型是准确的:)()(1s W s W p m =ττ=m U (s )对于干扰信号,求扰动传递函数)(1s N (1)Smith 预估器的完全抗干扰改进Y (s )+-R (s )=0)(s W p seτ-)(1s W m sm eτ-+-+-D (s )+-N 1(s ))(s W f ∙新增环节假设建立的对象模型是准确的:)()(1s W s W p m =ττ=m U (s ))()()]()([1s Y es W s U s N sp =+-τ)()1)(()()()()()()()(11s D es W s U s W s W s U s D s Y s U sm f m m τ-----=为了使系统能完全抗干扰,使得1()()()()(1)0sp f p W s W s W s D s eτ-++-=()()(1)1()()sp f p W s D s eW s W s τ---=即对于干扰信号,扰动闭环传递函数:)(1s N (1)Smith 预估器的完全抗干扰改进[]sp sm m f m sp sm f m e s W s D e s W s D s D s W s W s W e s W s D e s W s W s W s N s Y mm ττττ----+-++-++=)()()()()()()()(1)()()1)(()()(1)()(111111[])()()()(1)()1)(()()()(1)()(1s D s W s W s W es W e s D s W s W s W s N s Y p f p sp sp f p m ++-++=--ττ)()(1s W s W p m =ττ=m此时,系统闭环传递函数)()()()(1)()()()(s W s D s W s W e s W s D s R s Y p f p sp ++=-τ1)()()()()()(==--sp sp e s W s D es W s D s R s Y ττ可以实现完全跟踪或完全无偏差控制。
史密斯预估控制在大滞后过程控制系统中的应用摘要:本文简单分析了大滞后过程控制系统难于控制的主要原因,从而引出史密斯预估控制的基本思想及实现过程,并给出了一个实例进行仿真说明。
关键词:大滞后过程控制系统史密斯预估控制仿真实例1 大滞后过程控制系统概述在工业生产过程中,被控过程除了具有容积滞后外,还存在不同程度的纯滞后。
例如在工业生产中的乳化物干燥过程中,进入干燥器干燥乳液所用的热蒸汽需要经过换热器的热交换,才能改变空气温度。
由于换热器的时间常数较大,导致存在纯滞后。
此外,如化学反应、管道混合、皮带传送、轧辊传输、多个容器串联以及用分析仪表测量流体的成分等都存在不同程度的纯滞后。
1.1 难于控制的原因在大多数被控过程的动态特性中,既包含纯滞后τ,又包含惯性常数t,通常用τ/t的比值来衡量被控过程纯滞后的严重程度。
若τ/t<0.3,则称为一般滞后过程;若τ/t>0.3,则称之为大滞后过程。
大滞后过程被公认为较难控制的过程。
难于控制的主要原因分析如下:①由测量信号提供不及时而产生的纯滞后,会导致调节器发出的调节作用不及时,影响调节质量。
②由控制介质的传输而产生的纯滞后,会导致执行器的调节动作不能及时影响调节效果。
③纯滞后的存在使系统的开环相频特性的相角滞后随频率的增大而增大,从而使开环频率特性的中频段与(-1,j0)点的距离减小,结果导致闭环系统的稳定裕度下降。
若要保证其稳定裕度不变,只能减小调节器的放大系数,同样导致调节质量的下降。
2史密斯预估控制史密斯预估控制的基本思想是预先估计出被控过程的动态模型,然后设计一个预估控制器对其进行补偿,使滞后了τ时间的被控量提前反馈到调节器的输入端,使调节器提前动作,以减小超调和加速调节过程。
其控制系统框图如图1所示。
图1中,g0(s)是被控过程无纯滞后环节е-τs的传递函数;gs(s)是史密斯预估器的传递函数。
假设没有此预估器,则由调节器输出u(s)到被控量y(s)之间的传递函数为y(s)/u(s)= g0(s)е-τs (2-1)式(2-1)表明,受到调节器作用的被控量要经过纯滞后时间τ之后才能反馈到调节器的输入端,这就导致调节作用不及时。
史密斯预估控制策略在厚规格轧制中的应用史密斯预估控制(Smith Predictor Control)是一种经典的控制策略,主要用于处理存在传输延迟的系统。
在厚规格轧制中,轧机控制系统面临着多种挑战,包括传输延迟、不确定性和非线性。
史密斯预估控制策略可以帮助解决这些挑战,并改善轧机生产性能。
在厚规格轧制中,通常需要对板材实施厚度控制。
然而,由于传输延迟的存在,控制器接收到的输入信号可能已经过时,导致控制器无法实时调整输出。
史密斯预估控制策略通过预估被控对象的输出,使得控制器能够更准确地估计未来的状态,并相应地调整输出信号。
这种预估可以通过传输延迟和系统模型来实现。
首先,需要建立被控对象的数学模型。
该模型需要考虑到厚规格轧机的物理特性和传输延迟。
通常采用状态空间模型或传递函数模型来描述轧机控制系统。
然后,根据模型,使用史密斯预估器来预估该系统的未来状态。
史密斯预估器由两部分组成,即传输函数预估器和状态预估器。
传输函数预估器根据已知的传输延迟和系统模型预估未来的输出。
状态预估器则根据传输函数预估器的输出以及系统模型预估未来的状态。
两者结合起来,可以提供一个准确的未来状态估计值,从而使控制器能够及时调整输出。
在史密斯预估控制策略中,控制器的设计也非常关键。
控制器需要根据实时的状态估计值和期望的输出信号来计算出最优的控制输出。
常用的控制器设计方法包括PID控制和模型预测控制。
PID控制是一种经典的控制方法,通过调整比例、积分和微分增益来实现控制目标。
模型预测控制则是在史密斯预估的基础上,通过优化控制计算来实现优化控制。
在厚规格轧制中,史密斯预估控制策略的应用可以带来多项优势。
首先,它可以处理传输延迟和不确定性,提高控制系统的鲁棒性和稳定性。
其次,它可以提供准确的未来状态预测,使控制器能够及时调整输出信号,从而实现更好的控制性能。
此外,史密斯预估控制还可以适应非线性系统,并根据实际情况进行调整和优化。
总之,史密斯预估控制策略在厚规格轧制中具有广泛的应用前景。
0 引言时滞现象常产生于化工、轻化、冶金、计算机网络通讯和交通等系统中[1,2]。
就控制系统而言,时滞是指作用于系统上的输入信号或控制信号与在它们的作用下系统所产生的输出信号之间存在的时间上的延迟,当时滞较大时,将会使系统中的被调量不能及时反映控制信号的作用;另外,当被控对象受到干扰而使被调量改变时,控制器产生的控制作用不能及时有效地抑制干扰的影响,从而导致较大的超调量和较长的调节时间,甚至产生不稳定。
因此,大时滞系统一直受到人们关注,成为目前过程控制研究领域的一个重要课题。
过程控制中,通常用过程纯滞后时间常数和系统时间常数之比来衡量过程时滞。
当τ/T≤0.3时,称为一般时滞过程,过程比较容易控制,常规PID控制就能收到良好的控制效果;当τ/T>0.3时,称为大时滞过程,需要采取特殊的高级控制方法,其控制难度随τ/T的比值增加而增加。
本文分析了在过程控制中广泛采用的大时滞过程控制算法——Smith预估补偿法,即Smith预估器,并重点讲述了其改进算法——双自由度Smith预估器,最后进行了仿真。
仿真结果表明该改进算法是可行的。
1 传统Smith预估器传统Smith预估器实质上是一种模型补偿控1.1 Smith预估控制基本思路Smith预估控制是瑞典科学家Smith于1957年提出的一种解决时滞系统控制问题的预估控制方法,其控制基本思路是预先估计出过程在基本扰动下的动态特性,然后由预估器进行补偿控制,使被延迟了的被调量提前反映到调节器,并使之动作,以此来减小超调量与加速调节过程[3]。
1.2 Smith预估控制补偿算法引入补偿环节Gk(s)后的闭环系统方框图如图1所示。
其中,Gc(s )e-τσ表示实际过程,Gk(s)表示系统一般PID调节器。
由图1可知系统闭环传递函数为引入补偿环节Gk (s)后,希望系统闭环传递函数的分母不再含e-τσ项,即要求1+Gc(s )Gk(s )+Gc(s )Gk(s )e-τσ=1+Gc(s)Gp(s) (2)即Gk(s)=(1-e-τσ)Gp(s) (3)将式(3)代入图1便可得到图2所示的传统连续Smith预估器方框图。
史密斯预估补偿控制及matlab仿真
史密斯预估补偿控制是一种常用的控制方法。
在控制系统中,史
密斯预估补偿器通过对系统进行预估来消除系统的时滞。
这种技术主
要适用于具有较长时滞的控制系统,如化工系统和电力系统。
Matlab是一种优秀的数学软件,可用于分析和仿真控制系统。
在史密斯预估补偿控制中,Matlab可以用于实现控制系统的建模和仿真。
控制系统的建模包括将系统的物理过程转化为数学方程。
这些方
程可以描述系统的行为和特性。
通过使用Matlab,可以轻松地将这些
方程转化为计算机可读的形式,并用于系统的仿真。
控制系统的仿真可以帮助工程师更好地理解系统的行为和特性。
通过在Matlab中设置控制算法并输入系统的参数,可以模拟系统的行为。
这可以帮助设计者优化控制算法并测试其性能。
总之,史密斯预估补偿控制及其在Matlab中的仿真是现代控制
工程师的重要研究内容。
它们使得设计者能够更好地理解和优化控制
系统的行为和性能。