五年级下册数学试题-奥数专题训练:第十二讲 数阵图(无答案)全国通用
- 格式:doc
- 大小:243.47 KB
- 文档页数:5
第十二讲巧填数阵图数学乐园晶晶和莹莹来到了雪精灵国,天空中到处飘着洁白剔透的雪花,就像下面图中的样子.一个雪精灵告诉她们:“你们只要能够把1~7这七个数填在雪花的七个花瓣上,使每三个位于同一直线上的花瓣上的数之和都相等,你们就能见到雪精灵国的女王了.”你能帮她们填一填吗?.【教学思路】在开课的时候,老师可通过故事引入,激发学生对填数游戏的兴趣.让学生初步感知什么是数阵.因为填数阵有一定的难度,所以在这里我们不需要马上让孩子完成这个题,可以放在最后来解决这个问题.小朋友们,你喜欢这样的填数字游戏吗?要想准确的填出图中的每一个数,可不是一件容易的事,这就要我们小朋友们认真去观察图,观察数字的排列规律,这样才能找到填图的方法.下面我们就一起来学习吧!基础篇使用数字0,1,2,3,4,5,6,7,8,9做加法.在每一道题中,同一个数字不能重复出现.数阵图是小学奥数中比较重要的一个知识点,现在我们把它放在一年级开始学习似乎有些过难.但这节课我们只是希望通过一些简单的填数字游戏,使学生初步感知到什么样的是数阵,让学生用自己喜欢的方法来巧填数字,培养他们的思维能力.在鼓励学生去研究方法的同时,教师引导学生去发现数阵的简单规律,以及填数阵的基本方法,通过找数阵中的关键数来找到解题的钥匙.在今后的不断学习中,能把这种方法灵活应用到实际中去.【教学思路】一般在解答这类填数问题时,把同一条边上出现两个数字的空格先填.之前我们已经有过这样的练习,学生有了一定的基础.这道题的答案不止一个,我们只要求学生能找到其中的一种就达到要求了.(1)右边两个圆的和应该是9,所以里可填(0,9)(2,7)(3,6).(2)告诉我们中间的数字是2,剩下两边上两个数字的和应该是9-2=7.0+7=1+6=3+4,所以剩下两边上两个数可以填(0,7),(1,6),(3,4)(3)7+6=13,15-13=2,所以第2条线中间填2.左边第一条线:15-7=8,0+8=3+5,数字不重复共两种填法.第三条线15-6=9,0+9=4+5,数字不重复共两种填法(4)6+4=10,13-10=3,所以第2条线最下是3,.左边第一条线:13-6=7,0+7=2+5,数字不重复共两种解法.第三条线:13-3=10,1+9=2+8,数字不重复共两种解法.拓展练习(1)填数,使横行、竖行的三个数相加都得11. (2)填数,使每条线上的三个数之和都得15.【答案】【答案】在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.【教学思路】方法一:填数时,首先要看哪一行已经有了两个数,然后用18减去这两个数,就得出这一行的第三个数.填数的顺序如下:方法二:从斜行来考虑:要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?【教学思路】首先我们要找到填这个表格的突破口,一般情况下我们先找每行、每列以及每条对角线上已知两个数的来先填.找到这个突破口,后面就容易多了.方法一:从竖行入手.方法二:分别从两条对角线入手.拓展练习在下列两图的空格中填上数,使横行和竖行或每条对角线上的三个数相加都等于15.【答案】【答案】把1,2,3,4,5,6六个数,分别填入○内,使每条线上3个数的和相等.【教学思路】比较三个已知数1,2,3,和1比2大1,3大2.还剩下三个数4,5,6要我们来填,5+6=11 6+4=10 5+4=9 ,要使每边和相等,5+6+1=6+4+2=5+4+3=12,答案如下:提高篇把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数相加都得15.【教学思路】方法一:观察法.要使横行、竖行的三个数相加都得15,我们就要考虑中间填什么数.观察这五个数3,4,5,6,7,我们发现4和6,3和7可以组成10,它们分别再加上多出来的5都得15,所以中间这个数应该填5,上下,左右可以分别填4和6,3和7,如图:方法二:观察这些图,容易发现,中间方框中的数比较特殊,它既在横行上,又在竖列中,在数阵中这样的数称为“重叠数”.只要我们确定了中间的“重叠数”填几,别的空格就简单了.那么横行3个数的和加上竖列3个数之和就等于所要填入的5个数的和与重叠数的和.于是(3+4+5+6+7)+重叠数=15+15,重叠数=30-25=5,所以中间的这个数应该填5,在剩下的4个数3,4,6,7中,只有3+7=4+6=10,填法如图.建议:在这两种方法中,学生习惯用第一种方法来观察出答案,但是这种方法对于以后数字大的题就很难把握,因此老师在学生掌握了第一种方法的前提下,要介绍第二种解答数阵图的一般方法,不要求学生马上掌握,但是要让学生明确解答这样的题要从重叠数开始入手分析,以后练得多了就能融会贯通了.如果老师觉得这几个数太大学生不容易接受,还可以改成更小的数.拓展练习把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于1 2.【答案分析】中间○即为特殊的重叠数,因为它既是横线上的数,又是竖线上的数.中间的数填什么呢?横行加上竖行之和应为 12+12=24,而2+3+4+5+6=20,中间的要多加一次,所以应为4.把1,2,3,4,5,7分别填入○里,使每一个大椭圆上的四个数之和等于13.【教学思路】方法一:观察法,在这6个数中,有两个数是公共的,那么剩下的四个数两两相加应该相等,观察1,2,3,4,5,7中1是公共数,这时我们发现2+7和4+5都等于9,因此剩下的3也应该是公共数,2和7,4和5应该分别填在这两个圆的左边和右边.经检验每个大椭圆上的四个数这和等于13.方法二:每个椭圆里的四个数之和等于13,那么两个椭圆里的四个数之和就是13+13=26,另外这6个数相加的和是1+2+3+4+5+7=22,26和22之间相差的是什么呢?只有中间的这两个重叠数被多加了1次,这相差的4应该是两个重叠数的和,1+3=4,所以中间的这两个重叠数应该是1和3.剩下的数2+7=4+5=9.把1,2,3,4,5,6,7这七个数分别填入○里,使每条直线上的三个数相加的和都为12.【教学思路】方法一:观察法,在1,2,3,4,5,6,7这七个数中,除去中间的重叠数,剩下的六个数两两相加应该相等,经验算,当重叠数是4时,1+7=2+6=3+5=8,8+4=12,如图:方法二:因为图中共有3条直线,所以中心的重叠数重叠了2次,于是(1+2+3+4+5+6+7)+重叠数×2=12+12+12.重叠数=(36-28)÷2=8.那么中间的数应该填14剩下的6个数1,2,3,5,6,7,中,2个数的和等于12-4=8的有1+7=2+6=3+5,如图:拓展练习把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15.把2,3,4,5,6,7,8这七个数分别填入圆圈中,使两个正方形中四个数之和相等19.【教学思路】先考虑求两个正方形公共的中间数.2+3+4+5+6+7+8+重叠数=19+19.重叠数=3,那么中间圆圈里面应该填3.剩下的数中2+6+8=4+5+7=19-3=16,所以每个正方形中,剩下的三个数应该填:2,6,8或4,5,7.具体填法如下:拓展:如果使两个正方形中四个数之和相等21,又应该怎样填?我会做一做把1,2,3,4,5,6,7这7个数分别填入右图中,使得每条直线上的3个数的和相等.【教学思路】这道题的答案不唯一.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【答案】【教学思路】如果有充足的时间,建议这题可放在例3的后面做一个加深,这道题也主要是利用加减法之间的关系来解答的.这个题我们要从已知三个加数的第二列入手开始填,先计算出这三个加数的和,再用64减去这三个加数的和就得到了这第四个加数.用图中已有的三个数填满其余的空格,每个数字必须使用三次.使得每行、每列和两条对角线上的三个数之和相等.【答案】【答案】把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15.【答案】【教学思路】这道题可参考放在例6的后面,做一个拓展.在例6的基础上,我们只需要调动四条边上各数的位置就可以验证出结果.使用数字0,1,2,3,4,5,6,7,8, 9求和.而且同一个数在一幅图中不能重复出现.【答案】【答案】把1~11这十一个数分别填入图中的圆圈里,使每条直线上的三个数的和都等于18.【答案】练习十二1.在下面的○里填上适当的数,使每条线上的三个数之和都是12.【答案】2.把3~8这6个数,填在下图中使得每行、每列和两条对角线上的三个数的和都为18.【答案】3. 把1,2,3,4,5这五个数分别填入下面的○里,使横行、竖行的三个数相加都得10.【答案】4.把3,4,5,7,9,11,13这七个数分别填入○里,使每条直线上的三个数相加的和都为20.【答案】5. 将1,2,3,4,5,6这6个数分别填入下图中,使两个大圆上4个数的和都等于14.【答案】6.把数字1,2,3,5,6,7,9填在下面的○里,使每边上的和为15.【答案】小朋友,你在少年宫里走过“勇敢者的道路”吗?道路崎岖,充满艰难险阻.但是,它能培养小朋友的勇敢精神和不怕困难的毅力.这里有两幅图,也叫“勇敢者的道路”.图中的道路狭窄、曲折,不易通过,需要小朋友细心和有耐心.现在请小朋友用一枝铅笔,按照图中箭头的方向画出通行路线,而且线条不能碰到两边的“围墙”.小朋友,这可真不容易哦!。
课时3 数阵问题(一)一.数阵填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,主要讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。
把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
二.例题精析例1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D +E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。
然后再根据5+9=6+8便可把五个数填进方格,如图b。
小试牛刀把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。
在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2、6,8,9)和(3、5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1、5,9,10)和(4,6,7,8)。
小试牛刀1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
小学奥数专题之——————数阵图数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
\1.10.5.2辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。
20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。
只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。
确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
:解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。
设中心数为a,则a被重复使用了2次。
即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。
(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。
由此,便可推得a只能是1、4、7三数。
当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
例题精讲知识点拨教学目标5-1-3-1.数阵图【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
CBA【例 4】 将1至6这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是 .789fedcba 789【例 5】 将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是______.BA【例 6】如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。
BA【例 7】把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22的正方形中的4个数之和相等.那么,这个和数的最小值是多少?11109 8765432【例 8】下图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?861102912311457【例 9】如图,大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形的四个顶点上.⑴能不能使8个三角形顶点上数字之和都相等?⑵能不能使8个三角形顶点上数字之和各不相同?如果能,请画图填上满足要求的数;如果不能,请说明理由.246824688642【例 10】将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.【例 11】一个3 3的方格表中,除中间一格无棋子外,其余梅格都有4枚一样的棋子,这样每边三个格子中都有12枚棋子,去掉4枚棋子,请你适当调整一下,使每边三格中任有12枚棋子,并且4个角上的棋子数仍然相等(画图表示)。
数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
小学奥数之数阵图解题方法1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】5-1-3-1.数阵图教学目标知识点拨例题精讲【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:a+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7. 说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数8765432187654321()(2)h gf ed c ba阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
第四讲:数阵练习 (必做与选做)1. 如下图,每行、每列、每条对角线上数的和都相等,那么a 、b 、c 、d 有什么关系?A. a >b >c >dB. a <b <c <dC. a=b=c=dD. 无法判断 解析:c b c a b a =→+=+d c d c c a =→+=+d a c b d c b a =→=+=+,,那么由此可推出d c b a ===。
选C 。
2. 如下图,在五个小圆圈内分别填上1、2、3、4、5这五个数,使每条直线上的三个数字之和都相等。
C 处分别可以填多少?A. 1、3、5B. 1C. 1、3D. 3、5 解析:中间的c 是两条直线上公共的点,所以如果将两条直线上的数都相加,是1+2+3+4+5+c=15+c ,因为两条直线上的三个数的和相等,所以(15+c )必须能被2整除,即c必须为奇数,c可以是1、3、5。
选A。
3.阿派将1、2、3、4、5、6、7这七个数填入下图的七个方框里,每个数只填一次,使得三条直线上的三个数之和恰好分别是8、11、15,e可以怎么填?A. 5B. 7C. 3D. 1解析:将三条线上的数都加在一起,中间的e加了3次,其它数都加了一次,所以三条线上三个数的和=1+2+……+7+2e=28+2e,条件又说三条线上三个数的和分别是8、11、15,所以28+2e=8+11+15,e=3。
选C。
4.将1~5填入右图的○中,使得横、竖、大圆上的几个数之和都相等每个数只能用一次,e处分别可以填什么?A. 1B. 5C. 3D. 无正确答案解析:先看“十字”上的两条直线,中间的e被加了两次,如果将两条直线上的数都相加,是1+2+3+4+5+e=15+e,因为两条直线上的三个数的和相等,所以(15+e)能被2整除,即e为奇数,e可以是1、3、5。
当e=1时,其它四个数的和是2+3+4+5=14,14÷2=7,7+1=8,即每条直线上数的和是8,但是圆上的数的和是14,所以不满足;当e=3时,其它四个数的和是1+2+4+5=12,12÷2=6,6+3=9,即每条直线上数的和是9,但是圆上的数的和是12,所以不满足;当e=5时,其它四个数的和是1+2+3+4=10,10÷2=5,5+5=10,即每条直线上数的和是10,圆上的数的和也是10,满足条件。
五年级数学培优:数阵图、数字谜(含解析)将1~11填入图中的○内,使得每条线段上的三个圆圈内数字之和等于22.知识概述1.数阵图的一般解题思路:由于数阵图中没有填充之前各个数的位置无法确定,从每一个单个数上无法进行判断,所以我们采用的是整体与个体相结合考虑的方法,即利用所有相关数和全部相加进行分析.2.数字谜:①数字谜介绍:数字谜从形式上可以分成为横式数字谜与竖式数字谜,从内容上可以分为加减乘除4种数字谜,横式数字谜一般可以转化为竖式数字谜.②数字谜常用的分析法介绍解决数字谜问题最重要的就是找到突破口,突破口你的寻找是需要一定得技巧性,一般来说,首先是观察题目中给出数字的位置,同时找出涉及这些已知数字的所有相关计算,然后根据各种分析法进行突破,突破的顺序一般是三位分析法(个位分析,高位分析和进位借位分析)另外加入三大技巧(估算技巧——结合数位,奇偶分析技巧和分解素因数技巧)等、而且一般应该先从涉及乘法的地方入手,然后在考虑加法后减法的分析(并不完全都是这样).例1数阵图与数字谜这类问题在历届杯赛中经常出现,属于各大杯赛的高频考点,因为这类题是正确率很高的题目,所以要想取得好成绩,必须掌握这类题型的解题方法. 名师点题【解析】首先求出数阵图中关键位置的数,在数阵图的中间位置,是:(22×5-66)÷4=11,剩下的数从下到大排列,首尾配对即可:1配10,2配9,,3配8,4配7,5配6.在下图中填9个数,使每行、每列、对角线上的三个数的和都相等.那么b处应该填入的数是().【解析】这是一个三阶幻方,每行、每列、每条对角线上三个数的和相等,我们称这个相等的和是幻和,幻和是中央的数的3倍,幻和=3b=1.9+b+0.9= 2.8+b,进而得到2b=2.8,b=1.4.在右边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出:△□□〇+〇□□△□□☆☆那么:口+○+△+☆=_________.【解析】比较竖式中百位与十位的加法,十位上“□+□”肯定进位,(否则由百位可知□=0),且有“□+□+1=10+□”,从而□=9,☆=8.例3例2再由个位加法,推知○+△=8.从而口+○+△+☆=9+8+8=25.【巩固拓展】1.将从8开始的11个连续自然数填入下图中的圆圈内,要使每边上的三个数的和都相等,a共有()种填法.【解析】由于每边上的三个数字和都相等,设每边和为S,从整体考虑将其全部相加和为5S,从个体考虑,除中间数加了5次外,其他数均加了1次,可看作8至18均加了1次,中间数a多加了四次,表示为(8+9+......+18)+4a,列出等式为5S=(8+9+ (18)+4a,化简为5S=143+4a,要使等式成立,4a的末位必须为2,得出三种答案,8,13,18.2.将1-12这十二个自然数分别填入下图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为__________.【解析】由于每条直线上的四个数之和都相等,设这个相等的和为S,把所有6条直线上的四个数之和相加,得到总和为6S;另一方面,在这样相加中,由于每个数都恰好在两条直线上,所以每个数都被计算了两遍.所以,6(12312)2S=++++⨯,得到S=26,即所求的相等的和为26.3.在右边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs=______.s t v av t s tt t v t t+【解析】首先可以判断t=1,所以s+v=11,v=t+t+1=3,可解得s=11-3=8,又因为a+t=t,所以a=0,1038tavs=.将自然数1、10、19、28、37、46、55分别填人右图中的七个方框中,使每条直线上的三数之和与每个圆周上的三数之和都相等.那么圆心上的那个数应该填多少?【解析】圆心上的数属于三条直线,其余数都属于一条直线一个圆周,所以除中心的数被计算3遍外.其余数都被计算2遍.由()11019283746552392++++++⨯+=+中心数中心数,应是5的倍数,推知中心数为28.【巩固拓展】将3、5、7、11、13、17、19、23、29这9个数分别填人右图的9个○中,使3条边上的○中的数之和都相等.请分别求出满足上述条件的最大的和与最小的和.例1【解析】设三个顶点○内所填的数为a、b、c,每条边上的和为K,三个顶点上的数在求和时各用了2次,所以条边上的三数之和相加得()()3571113171923291273a b c a b c K+++++++++++=+++=;由于所得的和必须能被3整除,而1273421÷=,所以()a b c++的和应被3除余2,a b c++的最小值是571123++=,最大值是29231971++=,所以K的最小值是()12723350+÷=,最大值是()12771366+÷=.请将1~9这9个数填入右图3×3表格中,使得第1,2行三数的乘积分别是70,24,第l、2列三数的乘积分别是21、72.【解析】因为70=2×5×7,21=1×3×7,所以A=7,D等于2或5,因为D×E×F=72,72不能被5整除,所以D为2,72=2×4×9,即E为4或9,且B×E×H=24.24不能被9整除,所以E为4,24=1×4×6,也就是B=1,H=6,剩下的数易得.最后结果为:F IHGEDCBA986542317【巩固拓展】能否在8行8列的方格表的每个空格中(如图),分别填入1、2、3这三个数字中的任一个,使得每行每列及对角线AC、BD上的数字和互不相同?对你的结论加以说明.例2【解析】不可能.这里一共有8行、8列、2条对角线,每行每列及对角线AC、BD上的数字和互不相同,所以数字和一共有8+8+2=18(个);又根据题目要求,每行、每列及对角线的8个数的和最小取值是8×1=8,最大为8×3=24,8到24一共有17个数.17<18,所以不可能实现每行每列及对角线AC、BD上的数字和互不相同.将1、2、3、4、5填入5×5的正方形表格的小方格中,使每个数字在每行、每列、每条对角线上都只出现一次,其中部分数字已经填出,请按照以上要求填写其他小方格.【解析】①根据唯一解法,可以快速得到第四行第一列填5;②观察第5列,可知第5行第5列方格中不能填4、5(根据列摒除法);再观察从左上至右下的对角线,可知第5行第5列方格中不能填1、3(根据对角线摒除法).那么根据唯一解法,可以确定第5行第5列方格中填2;③对两条对角线进行分析,可以确定第3行第3列方格中只能填4;④再根据唯一解法确定第2行第2列方格中填5;⑤接着可确定第2行第4列方格中填2,第5行第1列方格中填3;至此我们已经填出第1行、第4行、两条对角线上的所有方格中的数字,根据以上解题思路,可以顺势得出其他方格中的数字,最终的问题答案如下:例3【巩固拓展】如右下图,9个3×3的小方格表合并成一个9×9的大方格表,每个格子中填入1-9中的一个数,每个数在每一行、每一列中都只出现一次,并且在原来的每个3 3的小方格表中也只出现一次,10个“☆”处所填数的总和是.【解析】①先确定第6列4个☆的和:(1+2+3+…+8+9)-(1+9+8+4+2)=21;②确定第2层第3宫(9宫格)4个☆的和:(1+2+3+…+8+9)-(3+4+5+6+9)=18;③确定第1行第8列☆:观察所在行、所在列、所在宫,可以确定是5;④确定第3行第1列☆:观察所在行、所在列、所在宫,可以确定是2;所以10个“☆”处所填数的总和是:21+18+5+2=46.将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数,这个结果最大为.□÷□+□+□□=□÷□+□□例4【解析】 因为左边必是奇数,所以右边最大值为87.(否则为88),经过尝试,得3÷1+5+79=6÷2+84【巩固拓展】请在算式1111⨯=⨯中填入不同的四个数字,使等号成立.【解析】 在10-19这10个数中,剔除质数后只剩下6数,通过尝试可得到10×18=12×15.在右边的乘法算式中,字母A 、B 和C 分别代表一个不同的数字,每个空格代表一个非零数字.求A 、B 和C 分别代表什么数字.941A B CA B C⨯【解析】 第一个部分积中的9是C×C 的个位数字,所以C 要么是3,要么是7,假设C =3,第二个部分积中的4是积3×B 的个位数字,所以B =8.同理,第三个部分积中的1是积3×B 的个位数字,因此A =7.如果C =7,类似地可知B =2,A =3,但这时第二个部分积不是四位数,因此C ≠7.【巩固拓展】在下图中的除法竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么被除数DEFGF 是多少?例5【解析】显然的D=1,由AB×A=IF可知,A不会超过3,否则得到的乘积应该是3位数,如果A=3,那么B也不能超过3,所以B只能是2,这样的AB×B=32×3=96与AAH矛盾,所以A≠3,所以A=2,根据AB×B=AAH,可以尝试出B=8时,等式成立,得到这些条件既可依次求得:I=5,F=6,E=0,G=9,所以被除数DEFGF是10696.(第十一届中环杯初赛试题及答案)从1至13中选出12个自然数填入3×4的方格中,使每横行四数之和相等,每竖列三数之和也相等(横行的和没有必要与竖列的和相等).【解析】因为1+2+…+13=91,从中去掉一个数后应该能够被3以及4整除,即能被12整除.由于91÷12=7…7,应该去掉7,所有数的和为84.这样,每个横行的数字之和为84÷3=28,每个竖列的数字之和为84÷4=21.进一步分析可知,六个奇数必须有三个在一列,另外三个在另外一列.三个奇数和为21的,只有1+9+11和3+5+13两组,填好奇数,剩下的数就好填料.典型的两组答案(其余的答案均由这两个答案交换行列得到)如下:1 13 4 10 3 112 12例1如图大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形四个顶点上:(1)能不能使8个三角形顶点上数字之和都相等? (2)能不能使8个三角形顶点上数字之和各不相同? 如果能,请画图填上满足要求的数;如果不能,请说明理由.【解析】 (1)不能.如果这8个三角形顶点上数字之和都相等,设它们都等于S.考察外面的4个三角形,每个三角形顶点上的数的和是S ,在它们的和4S 中,大正方形的2、4、6、8各出现一次,中正方形的2、4、6、8各出现二次.即()42468360S =+++⨯=.所以S=60÷4=15.但是三角形每个顶点上的数都是偶数,和不可能是奇数15,因此这8个三角形顶点上数字之和不可能相等.(2)能,下图是一种填法.8个三角形顶点数字之和分别是:8、10、12、14、16、18、20、22.248668862244(第十二届中环杯试题)如图,纸片盖住了乘法算式的所有数字,但是已知每一个被盖住的数都是质数,那么积的个位数是()【解析】积的个位数等于两个因数的个位数积的个位数;一位质数有2、3、5、7;2×3=6,2×5=10,2×7=14,3×5=15,3×7=21,5×7=35;其中符合积的个位数也是质数的只有3×5=15或5×7=35,故积的个位数是5.在下面的乘法算式中,“数”、“字”、“谜”各代表一个互不相同的数字,求这个算式.⨯数字谜数字谜谜谜谜谜谜【解析】这是集数字谜和填空格于一体的数字问题,从题面上看,提供的信息较少,“谜”所在的位置较多,紧紧抓住“谜”所在的位置特点,逐一突破.由“⨯=数字谜谜谜”可知“谜”≠1,因此“谜”=5或6.例4例3(1)若“谜”=5,“⨯=数字谜数”的乘数的百位数字必须大于3且小于等于5,所以“数”=2,由于“⨯=数字谜字谜”,可知“255⨯=字字”,“字”是单数且小于5,故“字”=1或3,当“字”=1时,21521546225⨯=,不符合条件,当“字”=3时,23523555225⨯=,符合题意.(2)若“谜”=6,同理,“⨯=数字谜数”的乘积的百位数字必须大于4且小于等于6,所以“数”=2,由266⨯=字字,可知“字”=1,但21621646656⨯=,不符合条件.所以满足条件的算式是:23523555225⨯=.下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数.=美妙数学___________【解析】由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,所以“美”≥2,“秒”≤4,“美”+“学”=“数”;1)当“秒”=1,根据“美”ד学”的个位数为“妙”,可知,“美”、“学”为3和7,此时“美”+“学”=10,但题目中“美”+“学”=“数”<10,所以“妙”不等于1;2)当“妙”=2,根据“美”ד学”的个位数为“妙”,可知,“美”、“学”为3和4,或者4和8,但4+8=12>10,所以“美”、“学”为3和4,“数”=3+4=7,但274×3=822,积出现重复数字2,不合要求,273×4>1000也不合要求.3)当“妙”=3,根据“美”ד学”的个位数为“妙”,可知“美”、“学”为7和9,“美”+“学”>10,不合要求.4)当“妙”=4,根据“美”ד学”的个位数为“妙”,可知“美”、“学”为7和2,或者6和9,又“美”+“学”<10,所以“美”、“学”为7和2,“数”=7+2=9.497×2=994,合乎要求.因此,2497=美妙数学【练习1】在5×5方格表的空白处填入1-5中的数,使得每行、每列、每条对角线上的数各例5不相同?【解析】先确定右下角的方格,只能填“2”;左下角只能填3,最下一行只能是3、4、5、1、2.其他方格不难填成,结果如下图.【练习2】下图中有五个正方形和12个圆圈,将1-12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?【解析】设每个正方形四角上圆圈中的数字之和为x,则由5个正方形四角的数字之和,相当于将1-12相加,再将中间四个圆圈中的数加两遍,可得()++++=,x x121225 x=,具体填法如:26758649112310121【练习3】下图中有三个正三角形,其中有三条通过四点的线段.请你把1~9这九个自然数分别填在九个黑点的旁边,使每个正三角形顶点上三个数的和相等,每条线段上四个数的和也相等.【解析】每个正三角形顶点上三个数的和:(1+9)×9÷2÷3=15每条线段上四个数的和:[(1+9)×9÷2+15]÷3=20根据以上结论可以得到如下填法(答案不唯一):【练习4】如下图所示,A B C D E F G H I J、、、、、、、、、表示0-9这10个各不相同的数字.表中的数为所在行与列的对应字母的和,例如“G+C=14”.请将表中其它的数全部填好.A B C D E F G H I J+56771414【解析】 由于A+F=5,B+F=14,所以B-A=14-5=9,所以A 和B 只能是0和9.因此可以推出:A=0,B=9,C=6,D=3,E=2,F=5,G=8,H=1,I=4,J=7.可得下图.1013101041731694113107711881114147765+JI H G FE D C B A【练习5】 电子数字0-9如图所示,右图是由电子数字组成的乘法算式,但有一些模糊不清,请将右图的电子数字恢复,并将它写成横式形式:______________________.【解析】(1)显然乘积的百位只能是2;(2)被乘数的十位和乘数只能是0、2、6、8,才有可能形如,0首先排除;(3)如果被乘数十位是6或8,那么乘数无论是2、6或8,都不可能乘出百位是2的三位数.所以被乘数十位是2,相应得乘数是.(4)被乘数大于25,通过尝试得到符合条件的答案:28×8=224.【练习6】 下面式中不同的汉字代表不同的数字,问:“数学好玩”表示的四位数是多少?【解析】由积的千位数知“数”=1,由积的十位数知“学”=0,由积的百位数知“玩”=9.竖式化简为下式.由于“1真”×9= “10好”,所以“真”=2,“好”=8,“啊”=6.所以,“数学好玩”=1089.【练习7】在□中填入恰当的数字使算式能够成立.2【解析】①这个除法算式从相除的过程可以看出,商数的十位和千位均为0;②除数的2倍是一个三位数,而除数与商的万位相乘,积为两位数,可知商的万位数字为1,同样可知商的个位数字也为1,即商为10201;③又一个两位数的两倍必小于200,故第一次剩余(即被除数的前三位与除数之差)为1.而一个三位数与一个两位数之差为1,只能是100-99=1,故被除数前三位为“100”,而除数为99,由此可知,被除数为99×10201=1009899.。
第十二讲数阵图
【知识要点】
对某些几何图形,把一些数填入图形中,满足一定的条件,这类问题称为“数阵图”,幻方就是一种特殊的数阵图。
【经典例题】
【例1】把1~7七个数字分别填入图中的七个圆圈内,使每条直线上的三个圆圈内各数之和都相等。
【例2】将1~6这六个自然数填入下图中的六个圆圈内,使每条边上三个数的和都相等,并指出这个和所取的值。
【例3】把1~8这八个数分别填入右图的八个○内,使每个圆上五个数的和都等于21。
【例4】把2~8这七个自然数分别填在图中的○内,使得
四个三角形的三个顶点处的数之和都等于14。
图中a处应填几?
a
【例5】把1~9这九个数填入如图所示的九个小三角形中,使得每条边上的五个小三角形内的数的和都相等。
问:这个和的最小值是多少?
【例6】将1,2,3,5,6,7这六个数填入下表中使每行中的三个数的和相等,同时使每列两个数的和也相等。
【大展身手】
1.把1~7这七个数填入图中的〇中,使每条直线上三个数的和都等于14.
2.将1~9这九个数填入图中的〇,使每条边上四个数的和都等于17.
3.将1~8填在图中的〇中,使每条边上的三个数的和都相等,并求出这个和的取值范围.
4.将1~8填在图中的〇中,使大圆上、小圆上、横线上、竖线上四个数的和都相等,而且在大圆上的四个数中最大的数尽可能小.
5.在图中的小圆圈内,分别填人1~8这八个数字,使得图中用线段连接的两个圆圈内所填的数字之差(大数减小数)恰好是1、2、3、4、5、6、7这七个数字.
6.在图中的六个圆圈内,分别填入六个数(可以相同),它们的
和是20,而且每个小三角形三个顶点上的数之和相等,问这六个数的乘积是几?
7.把1到8这八个数填入图中的正方体的八个顶点的圆圈里,使每个面上的四个圆圈里的四个数之和都等于18.
8.如图所示,一个边长为3的正三角形,分成边长为1的九个小三角形,把数字1~9分别填入这几个小三角形中,使得图中:
(1)边长为2的正三角形的四个数字之和相等,并求出这个和的最大值和最小值.
(2)大三角形每条边上的五个数字的和相等,且这个和最大.
9.将1~8这八个数填入图中的几个方格内,使上面4格、下面4格、左边4格、右边4格、中间4格、四角4格、对角线4格内四个数相加的和都是18.
10.把1~10这十个自然数填人图中的10个方格中,要求图中三个2×2的正方形中四数之和相等,那么,这个和的最小值是几?
11.将1~8填人图中,使每条线段两端的两个数的差不为1.
12.在右图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?。