单因素方差分析的计算步骤
- 格式:doc
- 大小:196.00 KB
- 文档页数:4
第十三章单因素设计方差分析方差分析是由英国统计学家Ronald Fisher 研究出来的,并以他的名字命名的方法,称为F检验。
它可以解决单因素和多因素实验设计结果的数据处理问题。
早期的心理学实验是严格的实验室控制实验。
在实验中只允许研究者感兴趣的一种变量作为自变量,希望观察到自变量引起的因变量的变化。
自变量也称为因素(factor),在实验中只安排一个自变量的实验叫做单因素实验。
经典心理学实验通常是单因素实验。
单因素的实验可以较明确的观察到自变量与因变量之间的因果关系,较适用于研究比较单纯的心理现象,但往往无法说明复杂的心理现象。
现代的实验设计将一些额外变量引入实验成为实验中新的因素,以期实验的结果更贴近真实的情景,从而发展了多因素的实验设计。
统计中用符号表示实验设计时,常用大写的英文字母表示因素,如因素A、因素B、因素C等;用S表示被试(subject)。
把S写在表示因素符号的后边、前面或中间,则表示不同的实验设计,例如:单因素被试间设计AS、单因素被试内设计SA、多因素被试间设计ABS、多因素被试内设计SAB、混合设计ASB。
第一节t检验与I类错误当两个总体没有差异,而统计推论的结论说有差异,就犯了I类错误;当两个总体存在差异,而统计推论的结论说没有差异,就犯了II类错误。
通常,I类错误的发生概率用α表示,II类错误发生的概率用β表示。
当采用多个两两t检验时,发生I类错误的概率就会增大。
I类错误的计算公式如下:I类错误发生的概率=1-(1-α)C(13.1)所以当要比较3个或3个以上的总体平均数两两检验时,应采用方差分析(analysis of variance)的方法。
一个显著的F值表示,在所比较的总体平均数里至少有两个总体平均数存在着显著差异。
第二节方差分析的原理方差(V ariance)有时也称为变异数(V ariation),是表示一组数据离散程度的统计量。
方差的总体参数用符号σ2表示;方差的样本统计量用符号S2表示。
单因素方差分析的计算步骤Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、 单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。
结果如下表:m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设()m j n i a N x j ij ,2,1;,2,1,,~2==σ。
可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。
因此检验因素A 的各水平之间是否有显着的差异,就相当于检验:μ====m a a a H 210:或者 具体的分析检验步骤是:(一)计算水平均值令j x 表示第j 种水平的样本均值,式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。
首先,总离差平方和,用SST 代表,则,其中,n x x ij ∑∑=它反映了离差平方和的总体情况。
其次,组内离差平方和,用SSE 表示,其计算公式为:其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。
最后,组间平方和,用SSA 表示,SSA 的计算公式为:用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。
可以看出,它所表现的是组间差异。
其中既包括随机因素,也包括系统因素。
根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: 因为:在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,即 SSA SSE SST +=(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。
Excel进行单因素方差分析的步骤Excel是一种功能强大的电子表格软件,可以用于进行各种数据分析,包括单因素方差分析。
单因素方差分析是一种常用的统计方法,用于比较不同组之间的均值是否存在显著差异。
下面是在Excel中进行单因素方差分析的步骤:步骤1:准备数据首先,需要准备好用于分析的数据。
假设我们有一个实验,分为三个组,每个组有若干个观测值。
我们需要将这些观测值依次输入到Excel的一些工作表中。
步骤2:计算各组的均值和总均值在Excel中,可以使用平均值函数(AVERAGE)计算每个组的均值。
将这些均值记录在另一列或另一个工作表中。
然后,使用平均值函数计算所有组的总均值。
步骤3:计算组内平方和和组间平方和使用Excel的平方和函数(SUMSQ)来计算每个组的组内平方和。
组内平方和可以通过将每个观测值与其对应组的均值之差的平方相加来计算。
然后,使用平方和函数计算组间平方和。
组间平方和可以通过将每个组的均值与总均值之差的平方乘以该组的观测数量相加来计算。
步骤4:计算均方计算组内平方和和组间平方和的均方,即将组内平方和除以自由度(观测数量减去组数)得到组内均方,将组间平方和除以组数减1得到组间均方。
步骤5:计算F值使用Excel的F分布函数(FDIST)来计算F值。
F值可以通过将组间均方除以组内均方来计算。
步骤6:确定显著性水平和临界值根据实验设计和显著性水平的设置,确定F分布的临界值。
在Excel 中,可以使用F分布的临界值函数(FINV)来计算临界值。
步骤7:进行假设检验根据F值和临界值的比较结果,进行假设检验。
如果F值大于临界值,则可以拒绝原假设,即组均值存在显著差异。
如果F值小于等于临界值,则不能拒绝原假设,即组均值没有显著差异。
步骤8:进行事后比较(可选)如果在步骤7中发现组均值存在显著差异,可以使用Excel的多重比较方法,如Bonferroni校正、Tukey HSD等,进行事后比较。
单因素方差的结果分析
单因素方差分析是一种用于比较两个或更多个样本均值之间差异的方法。
在进行单因素方差分析时,需要进行以下几个步骤:
1. 建立假设:首先需要建立原假设和备择假设。
原假设通常是认为各组样本的均值之间没有显著差异,备择假设则认为各组样本的均值之间存在显著差异。
2. 计算平方和:计算总平方和(SST)和组内平方和(SSE)。
总平方和表示了所有样本值与总均值之间的差异总和,组内平方和表示了各组样本值与组均值之间的差异总和。
3. 计算均方:计算总均方(MST)和组内均方(MSE)。
总均方是总平方和与自由度之间的比值,组内均方是组内平方和与自由度之间的比值。
4. 计算统计量:计算F统计量。
F统计量是组间均方与组内均方之比。
5. 判断显著性:根据F统计量的值与临界值进行比较,判断差异是否显著。
如果F统计量大于临界值,则可以拒绝原假设,认为各组样本的均值之间存在显著差异。
6. 进行事后比较:如果F统计量的结果显著,通常需要进行事后比较来确定哪些组之间存在显著差异。
常用的事后比较方法包括Tukey的HSD测试和
Bonferroni校正等。
通过以上步骤可以对单因素方差分析的结果进行分析,确定各组样本均值之间是否存在显著差异。
1、划分变异原因总变异=处理间变异+区组间变异+误差变异2、列出试验结果并初步计算,求处理和T,区组和T ,和总和T。
3、分解并计算各项平方和、自由度(1)求平方和n (区组)=4k (处理)=6矫正数39609.37501257.631099.3855.46102.79(2)求各项自由度235使用说明:①使用前请详细阅读文档为娱乐学习之用,处理及区组均为10个,作中的蓝字为使用者填入,其他如工作表、格式及果给予重视,如为“不能反映处理间效应”或“一、单因素随机化完全区组设计的方差分析2=nkT C =k 2i i=11n A SS C T ∙==∑-==∑=C SS T B -n 1j 2j .k 1=--=SS SS SS SS B A T e ==1-nk T f =-=1f k A =-=1n f B --=)1)(1(n k f e n n 2ij i=1j=1x T SS C ==∑∑-3155、进行F检验64(2)求F值32.092.70(3)查F表(4)检验由表中F值和F临界值相比较得知:①否定H01,差异极显著2②接受H02,区组间差异不显著1结论:该项试验结果能极显著反映处理间的效应。
已知k=65种 , n=41.30893 3.16 4.351.3089 4.14 5.69②4 3.25 4.461.3089 4.25 5.84③5 3.31 4.551.3089 4.33 5.95④6 3.36 4.611.3089 4.40 6.03⑤0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑥二、邓肯(Duncan)多重极差法(LSR法),a有2、3……等(1)求LSR(1)H 01:α1=α2=…=αH 02;β1=β2=…=β=1-nk T f =-=1f k A =-=1n f B =--=)1)(1(n k f e ==22/e A A S S F 22e /=B B F S S =X S =0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑦0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑧细阅读统计学有关资料,按照相关要求进行完善,同时建议按照统计学示例进行验算;②本之用,处理及区组均为10个,作者不承担由使用该文档而产生的法律责任,如不赞同,请删除;③文者填入,其他如工作表、格式及公式等内容请勿非专业改动或删除;④在输入数据后请对方差分析结为“不能反映处理间效应”或“不能接受”,多重比较已无意义,请核对原始数据。
一、
①提出假设:虚无假设:H0: μ1=μ2=μ3
备择假设为至少有一个组的和其它组不同
②已知显著性水平为:а=0.05
③查F临界值表:F0.05(2,19)=3.52 F0.01(2,19)=5.93
④计算样本的F统计量观测值:
N=22 K=3 df组间=2 df组内=19
SS T =3.073 SS B=0.388 SS W=2.685
MS B=0.194 MS W=0.141 F=1.372 P=0.277
⑤统计决断:由于P=0.277>0.05,所以接受H0拒绝H1 ,我认为三组之间不存在显著地差异
二、
①提出假设:虚无假设:H0: μ1=μ2=μ3
备择假设为至少有一个组的和其它组不同
②已知显著性水平为:а=0.05
③查F临界值表:F0.05(3,19)=3.13 F0.01(3,19)=5.01
④计算样本的F统计量观测值:
N=23 K=4 df组间=3 df组内=19
SS T =7636.870 SS B=2850.346 SS W=4786.524
MS B=950.115 MS W=251.922 F=3.771 P=0.028
⑤统计决断:由于P=0.028<0.05,所以拒绝H0接受H1 ,我认为三组之间存在显著地差异
⑤事后检验:
Post Hoc Tests
结论:通过事后检验表可以得到,治疗方案1与治疗方案4对患者的治疗效果是有显著的差异,治疗方案3与治疗方案4对患者的治疗效果是有极其显著的差异。
其余治疗方案之间或没有差异或差异不显著。
单因素方差分析范文单因素方差分析(One-way Analysis of Variance,简称ANOVA)是统计学中一种常用的方法,用于比较三个或三个以上的组的均值是否存在显著差异。
本篇文章将从原理、假设、步骤和应用等方面进行介绍。
一、原理二、假设在进行单因素方差分析时,需要假设组间均值是否存在显著差异。
具体的假设如下:H0:各组均值相等(即组间均值差异不显著)H1:至少有两组均值不相等(即组间均值差异显著)三、步骤进行单因素方差分析的步骤如下:1.根据研究目的和问题选择合适的统计方法;2.收集数据,涉及到多个组的测量值;3. 计算总平方和(SS_total),表示总变异性大小;4. 计算组间平方和(SS_between),表示组间变异性大小;5. 计算组内平方和(SS_within),表示组内变异性大小;6. 根据以上计算结果,计算组间均方(MS_between)和组内均方(MS_within);7. 计算F值,即F=MS_between/MS_within;8.根据设定的显著性水平(通常为0.05),查表或计算得到临界值;9.比较计算得到的F值与临界值,判断是否达到显著性水平。
四、应用1.医学研究:比较不同药物对疾病治疗效果的影响;2.教育研究:比较不同教学方法对学生学习成绩的影响;3.市场调查:比较不同广告对产品销量的影响;4.农业实验:比较不同施肥方式对作物产量的影响。
五、总结单因素方差分析是一种常用的统计方法,通过比较三个或三个以上组的均值差异来判断各组之间是否存在显著差异。
它的优点是可以同时比较多个组均值的差异,从而提高实验效率和减少误判,应用广泛且实用。
因此,研究者在进行多组均值比较时,可以选择单因素方差分析方法进行分析。
一、 单因素方差分析的计算步骤
假定实验或观察中只有一个因素〔因子〕A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值
()m j n i ,2,1;,2,1==。
:
表3.1 单因素方差分析数据构造表
为了考察因素A 对实验结果是否有显著性影响,我们把因素A 的
m 个水平m A A A ,,21看成是m 个正态总体,而()
m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设
()m j n i a N x j ij ,2,1;,2,1,,~2==σ。
可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。
因此检验因素A 的各水平之间是否有显著的差异,就相当于检验:
μ====m a a a H 210:或者
具体的分析检验步骤是:
(一) 计算水平均值
令j x 表示第j 种水平的样本均值,
式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数
〔二〕计算离差平方和
在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。
首先,总离差平方和,用SST 代表,那么, 其中,n x x ij
∑∑
=它反映了离差平方和的总体情况。
其次,组内离差平方和,用SSE 表示,其计算公式为: 其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。
最后,组间平方和,用SSA 表示,SSA 的计算公式为: 用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。
可以看出,它所表现的是组间差异。
其中既包括随机因素,也包括系统因素。
根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在:
因为:
在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,
即 SSA SSE SST += 〔三〕计算平均平方
用离差平方和除以各自自由度即可得到平均平方。
对SST 来说,其自由度为1-n ,因为它只有一个约束条件,即
0)(=-∑∑x x
ij。
对SSA 来说,其自由度是1-m ,这里m 表示水
平的个数,SSA 反映的是组间的差异,它也有一个约束条件,即要求:
对SSE 来说,其自由度为m n -,因为对每一种水平而言,其观察值个数为j n ,该水平下的自由度为1-j n ,总共有m 个水平,因此拥有自由度的个数为m n n m j -=-)1(。
与离差平方和一样,SSE SSA SST ,,之间的自由度也存在着关系,即
这样对SSA ,其平均平方MSA 为: 对于SSE ,平均平方MSE 为: 〔四〕方差分析表
由F 分布知,F 值的计算公式为: 表3.2 方差分析表
〔五〕作出统计判断
对于给定的显著性水平α,由F 分布表查出自由度为
),1(m n m --的临界值αF ,如果αF F >,那么拒绝原假设,说明因
素对指标起显著影响;如果αF F ≤,那么承受原假设,说明因素的不同水平对试验结果影响不显著。