2.1.1平面
- 格式:ppt
- 大小:1.19 MB
- 文档页数:53
第一课时 2.1.1 平面教学要求:能够从日常生活实例中抽象出数学中所说的“平面”;理解平面的无限延展性;准确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解能够作为推理依据的三条公理.教学重点:理解三条公理,能用三种语言分别表示.教学难点:理解三条公理.教学过程:一、复习准备:2. 举例:生活中哪些物体给我们以平面的形象?二、讲授新课:1. 教学平面的概念及表示:① 平面的概念: A.描绘性说明; B.平面是无限伸展的;理解两点:无限好比在平面上画直线;一个平面把空间分成两局部。
② 平面的画法:A.任意角度观察桌面、黑板面,感到象什么?美术中如何画一张纸?B.画法:通常画平行四边形来表示平面。
(注意通常两字)水平平面:通常画成锐角成45°,横边等于邻边的两倍。
非水平平面:只要画成平行四边形。
直立的平面:一组对边为铅垂线。
相交的平面:一定要画出交线;遮住局部的线段画虚线或不画。
C.练习: 画一个平面、相交平面③ 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也能够用两个相对顶点的字母来表示,如平面BC 。
④ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.2. 教学公理1:①揭示公理1:假如一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)②应用:检验桌面是否平; 判断直线是否在平面内③符号:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ;直线l 的平面α内,记作l ⊂α。
④用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂3.教学公理2:①揭示公理2:经过不在同一条直线上的三点,有且只有一个平面。
②理解:不在同一条直线上;一点、两点、三点、四点的情况;有且只有一个,等价于确定 ③实例:一扇门。
第一课时平面(一)教学目标1.知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力.2.过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.(二)教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言. 难点:平面基本性质的掌握与运用.(三)教学方法师生共同讨论法教学过程教学内容师生互动设计意图新课导入日常生活中有哪些东西给我们师:生活中常见的如黑板动给予评价,点出主题. 培养学生感性探索新知1.平面的概念随堂练习判定下列命题是否①书桌面是平面;②8个平面重叠起来要比6个③有一个平面的长是50m,宽④平面是绝对的平,无厚度师:刚才大家所讲的一些下列命题是否正确?生:平面是没有厚度,无加深学生对平探索新知2.平面的画法及表示(1)平面的画法通常我们把水平的平面画成们常把被遮挡的部分用垂线画出来(2)平面的表示法1:平面α,平面β.法2:平面ABCD,平面AC或(3)点与平面的关系平面内有无数个点,平面可看成αα∈师:在平面几何中,怎样师:这位同学画的实质上生:画出平面的一部分,师:大家画一下.学生动手画平面,将有代加深学生对平探索新知3.平面的基本性质公理1:如果一条直线上的两(1)公理1的图形如图(2)符号表示为:A lB llABααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭(3)公理1的作用:判断直线是否在平面内.公理2:过不在一条直线上的三点有且只有一个平面.(1)公理2的图形如图(2)符号表示为:C ∉直线AB ⇒存在惟一α使得ABCααα∈⎧⎪∈⎨⎪∈⎩注意:(1)公理中“有且只师:我们下面学习平面的在平面上,调整直线上另一点生:当直线上两点在一个师:这处结论就是我们要师:从集合的角度看,公直线是由无数个点组成的过直线l,记作lα⊂,否则就α下面请同学们用符号表示学生板书,教师点评并完大家回忆一下几点可以确生:两点可确定一条直线师:那么几点可以确定上学生思考,讨论然后回答生1:三点可确定一个平面师:不需要附加条件吗?生2:还需要三点不共线师:这个结论就是我们要师投影公理2图示与符号师:下面请同学们观察教生:这两个平面的无穷多通过实验,培加强学生学生在观察、平面是有的,而且只有一个”,也“有且只有一个平面”也可以说(2)过A 、B 、C 三点的平面可记公理3:如果两个不重合的平(1)公理3的图形如图(2)符号表示为:lP P lαβαβ=⎧∈⇒⎨∈⎩(3)公理3作用:判断两个平面师:我们把这条直线称为3. 典例分析例1 如图,用符号表示下图分析:根据图形,先判断点、解:在(1)中,l αβ=,a α=aβ=在(2)中,l αβ=,a α⊂b β⊂a=b=学生先独立完成,让两个学生巩固所学随堂练习1.下列命题正确的是( )A .经过三点确定一个平面B .经过一条直线和一个点确C .四边形确定一个平面学生独立完成 答案: 1.D2.(1)不共面的四点可巩固所学D .两两相交且不共点的三条2.(1)不共面的四点可以确(2)共点的三条直线可以确3.判断下列命题是否正确,(1)平面α与平面β相交,(2)经过一条直线和这条直( )(3)经过两条相交直线,有(4)如果两个平面有三个不4.用符号表示下列语句,并(1)点A 在平面α内,但点α(2)直线a 经过平面α外的(3)直线a 既在平面α内,β(2)共点的三条直线可3.(1)×(2)√(34.(1)A α∈,B α∉. (2)M α∉,M α∈. (3)a α⊂,a β⊂.归纳总结1.平面的概念,画法及表示方法2.平面的性质及其作用 3.符号表示 4.注意事项学生归纳、总结教学、补回顾、反课后作业 2.1第一课时 习案 学生独立完成备选例题例1 已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面.证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ∉d ,如图1.∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α.∵A ,E ∈α,A ,E ∈a ,∴a ⊂α. 同理可证b ⊂α,c ⊂α. ∴a ,b ,c ,d 在同一平面α内.2o当四条直线中任何三条都不共点时,如图2. ∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α.αb adcG F EAa bcd α H K图1图2设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α. 又 H ,K ∈c ,∴c ⊂α. 同理可证d ⊂α.∴a ,b ,c ,d 四条直线在同一平面α内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分析题意时,应仔细推敲问题中每一句话的含义.例2 正方体ABCD —A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,求证:点C 1、分析:要证若干点共线的问题,只需证这些点同在两个相交平面内即可. 解答:如图所示A 1A ∥C 1C ⇒确定平面A 1C A 1C ⊂平面A 1C 又O ∈A 1C平面BC 1D ∩直线A 1C = O⇒O ∈平面BC 1D⇒O 在平面A 1C 与平面BC 1D 的交线上.AC ∩BD = M ⇒M ∈平面BC 1D 且M ∈平面A 1C平面BC 1D ∩平面A 1C = C 1M⇒O ∈C 1M ,即O 、C 1、M 三点共线.评析:证明点共线的问题,一般转化为证明这些点同是某两个平面的公共点.这样,可根据公理2⇒O ∈平面A 1CM O B 1C 1D 1A 1D CB A。
§2.1.1 平面一、新课导学探究一:平面的概念与表示问题1:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗?新知1:平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.问题2:通常我们用一条线段表示直线,那你认为用什么图形表示平面比较合适呢?αβγ来表示,也可以用平行四新知2:通常用平行四边形来表示平面.平面可以用希腊字母,,边形的四个顶点来表示,还可以简单的用对角线的端点字母表示.如平面α,平面ABCD,平面AC等.规定:①画平行四边形,锐角画成45°,横边长等于其邻边长的2倍;②两个平面相交时,画出交线,被遮挡部分用虚线画出来;③用希腊字母表示平面时,字母标注在锐角内.问题3:点动成线、线动成面.联系集合的观点,点和直线、平面的位置关系怎么表示?直线和平面呢?新知3:⑴点A在平面α内,记作;点A在平面α外,记作.⑵点P在直线l上,记作,点P在直线外,记作.⑶直线l上所有点都在平面α内,则直线l在平面α内(平面α经过直线l),记作;否则直线就在平面外,记作.探究二:平面的性质问题4:直线l与平面α有一个公共点P,直线l是否在平面α内?有两个公共点呢?新知4:公理1 :文字语言:图形语言:符号语言:问题5:两点确定一直线,两点能确定一个平面吗?任意三点能确定一个平面吗?新知5:公理2 :文字语言:图形语言:符号语言:推论1 :文字语言:图形语言:符号语言:推论2:文字语言:图形语言:符号语言:推论3:文字语言:图形语言:符号语言:问题6:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B?为什么?新知6:公理3:文字语言:图形语言:符号语言:二、典型例题例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.练习 用符号表示下列语句,并画出相应的图形:⑴点A 在平面α内,但点B 在平面α外;⑵直线a 经过平面α外的一点M ;⑶直线a 既在平面α内,又在平面β内.例2:已知,,,A l B l C l D l ∈∈∈∉.求证:直线,,AD BD CD 共面.点拨:简单的点线共面的问题,一般是先由部分点或线确定一个平面,然后证明其他的点线也在这个平面内,这种证明点线共面的方法称为"落入法"例3:在长方体1111ABCD A BC D -中,P 为棱1BB 的中点,画出11,,A C P 三点所确定的平面与长方体表面的交线.例4:如图所示,已知ABC 的三个顶点都不在平面α内,它的三边,,AB BC AC 延长后分别交平面α于点,,P Q R .求证:点,,P Q R 在同一条直线上.二、总结提升公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.。