九年代数综合练习题1
- 格式:doc
- 大小:148.50 KB
- 文档页数:4
2024年数学九年级下册代数基础练习题(含答案)试题部分一、选择题:1. 若a+b=5,ab=3,则a²+b²的值为()A. 16B. 34C. 22D. 142. 已知x²3x+2=0,则x²3x的值为()A. 2B. 2C. 0D. 13. 若|a|=3,|b|=5,则|ab|的最大值为()A. 2B. 8C. 3D. 74. 下列函数中,哪一个是一次函数?()A. y=2x²B. y=3x+1C. y=x²D. y=x³5. 若一个等差数列的公差为2,首项为3,则第10项的值为()A. 21B. 19C. 17D. 236. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √17. 若a:b=3:4,则3a+4b的值为()A. 7aB. 7bC. 12D. 248. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. √9C. 6D. 29. 下列哪个等式是分式方程?()A. 2x+3=5B. 1/x=2C. x²4=0D. 3x2=710. 若一元二次方程ax²+bx+c=0(a≠0)的两根分别是x₁和x₂,则x₁+x₂的值为()A. b/aB. b/aC. c/aD. c/a二、判断题:1. 任何两个实数的和都是一个实数。
()2. 一次函数的图像是一条直线。
()3. 两个负数相乘,结果一定是正数。
()4. 等差数列的公差可以是0。
()5. 一元二次方程的解一定是实数。
()6. 方差越小,说明数据的波动越小。
()7. 两个无理数的和一定是无理数。
()8. 若a:b=c:d,则ad=bc。
()9. 任何实数的平方都是正数。
()10. 两个正数相乘,结果一定是正数。
()三、计算题:1. 已知x+3=7,求x的值。
2. 计算:(3/4) ÷ (2/3)。
3. 若3x5=14,求x的值。
2012年初中学业水平模拟考试数 学 试 题 2012.3注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1. 对于实数a 、b ,给出以下三个判断:①若b a =,则 b a =.②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是( )A .3B .2C .1D .02. 已知2111=-b a ,则ba ab-的值是( ) A.21 B.-21C.2D.-2 3. 4月20日《情系玉树 大爱无疆──抗震救灾大型募捐活动》在中央电视台现场直播,截至当晚11时30分特别节目结束,共募集善款21.75亿元。
将21.75亿元用科学记数法表示(保留两位有效数字)为 ( )A .21×108元B .2.2×108元C .2.2×109元D .2.1×1094.下列运算中正确的是( )A .32914=B .9312-=⎪⎭⎫ ⎝⎛-- C .(-a )6÷(-12a 2)=2a 4 D . 2818=- 5. 在实数中()()101001.0,45cos ,333,71,2,3,0002--π,无理数的个数为( )A . 3 个 B. 4个C.5个D. 6个6.抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是( )A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >>8. 关于x 的方程0122=-++k kx x 的根的情况描述正确的是( ).A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种9. 在今年我市体育学业水平考试女子800米耐力测试中,小莹和小梅测试所跑的路程S (米)与所用时间t (秒)之间的函数关系的图象分别为线段OA 和折线OBCD . 下列说法正确的是( ).A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度快C .在180秒时,两人相遇D .在50秒时,小梅在小莹的前面10.竖直向上发射的小球的高度h (m)关于运动时间t (s)的函数表达式为h =at 2+bt ,其图象如图所示.若小球在发射后第2s 与第6s 时的高度相等,则下列时刻中小球的高度最高的是 第( ) A .3s B .3.5s C .4.2s D .6.5s11. 实数aA. 7B. -7C. 2a-15D. 无法确定12. 二次函数2y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数xc b a y +-=在同一坐标系内的图象大致为( )第2题图xxxx二、填空题(本大题共8小题,共24分,只要求填写最后结果,每小题填对得3分.) 13. 分解因式:321a a a +--=_____________________.14. 数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数 .15. 某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.16. 某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .17. 若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是 . 18.关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是 . 19.如图,在第一象限内,点P,M ()2,a 是双曲线)0(≠=k xky 上的两点,PA ⊥x 轴于点A,MB ⊥x 轴于点B,PA 与OM 交于点C,则△OAC 的面积为 .20.如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图○22的直角顶点的坐标为 .三、解答题(本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.) 21.(本题满分10分)(1)解不等式组,并把解集在数轴上表示出来3(2)412 1.3-x x xx -≤-⎧⎪+⎨>-⎪⎩,(2)解方程:x x x 221232=+-.22.(本题满分9分)先化简,⎪⎪⎭⎫ ⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,再从22<<-a 的范围内选取一个合适的数代入求值。
第三章 概率的进一步认识(时间:45分钟 满分:100分)一、选择题:(每小题3分,共30分)1.下列事件中,是必然事件的是 ( )A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞 2.下列事件中:确定事件是 ( )~6的数字的均匀骰子,骰子停止转动后偶数点朝上 B.从一副扑克牌中任意抽出一张牌,花色是红桃 C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日是同一天. 3.10名学生的身高如下(单位:cm )159 169 163 170 166 165 156 172 165 162从中任选一名学生,其身高超过165cm 的概率是 ( ) A.12B.25C.15D.1104.下列说法正确的是 ( )①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同; ③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同. A.①②B.②③C.③④D.①③5.如图1所示为一水平放置的转盘,使劲转动其指针,并让它自由停下,下面叙述正确的是( )B 区比停在A 区的机会大C.停在哪个区与转盘半径大小有关6.从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是( ) 图1AB 120CA.33100B.34100C.3107.两个射手彼此独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为0.8,在一次射击中,甲、乙同时射中目标的概率是( )8.如图2所示的两个圆盘中,指针落在每一个数上 的机会均等,则两个指针同时落在偶数上的概率是( )A.525 B.625C.1025D.19259.有阜阳到合肥的某一次列车,运行途中停靠的车站依次是:阜阳—淮南—水家湖—合肥,那么要为这次列车制作的火车票有( )“幸运52”栏目中的“百宝箱”互动环节,是一种竟猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三翻牌获奖的概率是 ( ) A.14B.15C.16D.320二、填空题(每小题3分,共15分)11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是 .12.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是.13.小红、小芳、小明在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定.请问在一个回合中三个人都出“布”的概率是 .14.在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图3所示,这个图形中折线的变化特点是 ,试举一个大致符合这个特点的实物实验的例子(指出关注的结果) .图2 12354 1 25 46图315.某校九年级(3)班在体育毕业考试中,全班所有学生得分的情况如下表所示:分数段18分以下18~20分21~23分24~26分27~29分30分人数 2 3 12 20 18 10那么该班共有人,随机地抽取1人,恰好是获得30分的学生的概率是,从上表中,你还能获取的信息是(写出一条即可)三、解答题(共55分)16.(6分)有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.17.(6分)将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少18.(8分)依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示所有可能的闯关情况;(2)求出闯关成功的概率.闯关游戏规则:图4所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置,同时按下两组中各一个按钮:当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置19.(8分)有一个转盘游戏,被平均分成10份(如图5),分别标有1,2,……,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的数字即为转出的数字.两人进行游戏,一人转动转盘,另一人猜数,如果猜的数与转出的数情况相符,则猜数的人获胜,否则转盘的人获胜.猜数的方法为下列三种中的一种: (1)猜奇数或偶数;(2)猜是3的倍数或不是3的倍数; (3)猜大于4的数或不大于4的数.如果你是猜数的游戏者,为了尽可能取胜,你选哪种猜法?怎样猜?20.(6分)王老汉为了与客户签订购销合同,对自己的鱼塘的鱼的总质量进行估计,第一次捞出100条,称得质量为184千克,并将每条鱼作上记号放入水中;当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有标记的鱼有20条. ①请你帮王老汉估计池塘中有多少条鱼? ②请你帮王老汉估计池塘中的鱼有多重? 图4图5 1 234 5 6 7 8 9 1021.(6分)(2007·湖州市)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.22.(7分)如图6,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上数字1、2、3、4四个数字;转盘B被均匀分成6等份,每份标上数字1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下:(1)同时转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.(8分)在一次数学活动中,黑板上画着如图7所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB DC =②ABE DCE ∠=∠ ③AE DE =④A D ∠=∠小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △是等腰三角形吗?说说你的理由;(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC △不能..构成等腰三角形的概率.参考答案一、1.B ; 2.D ; 3.B; 4.B; 5.A ; 6.A ; 7.A ; 8. B; 9.C ; 10.C. 二、11.13; 12. 12; 13.127; 14. 随着实验次数增加,频率趋于稳定.如:抛掷硬币实验中关注正面出现的频率; 15.65,213,答案不惟一,只要合理均可. 三、16.415. 17.(1)P (奇数)=23.(2)恰好是32的概率是16. 18.(1)略.(2)1419. 选(2)不是3的倍数 20.(1)1000条;(2)2000千克. 21.(1)树状图如下甲摸到的球 白 红 黑(2)乙摸到与甲相同颜色的球有三种情况 ∴乙能取胜的概率为3193=. 22. 不公平.∵P (奇)=1/4; P (偶)=3/4 ∴P (偶)>P (奇) ∴不公平.新规则:⑴同时自用转动转盘A 和B ;⑵转盘停止后, 指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜.理由:∵P (奇)=1/2; P (偶)=1/2 ∴P (偶)=P (奇) ∴公平 23.(1)能. 理由:由AB DC =,ABE DCE =∠∠,AEB DEC =∠∠, 得ABE DCE △≌△.BE CE ∴=,BEC ∴△是等腰三角形.(2)树状图: 先抽取的纸片序号所有可能出现的结果(①②)(①③)(①④)(②①)(②③)(②④)(③①)(③②)(③④)(④①)(④②)(④③)由表格(或树状图)可以看出,抽取的两张纸片上的等式可能出现的结果有12种,它们出现的可能性相等,不能构成等腰三角形的结果有4种,所以使BEC △不能构成等腰三角形的概率为13.第一章勾股定理 章末测试卷 一、选择题(每题3分,共36分)1.(3分)如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .1942.(3分)分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有( )组. A .2B .3C .4D .53.(3分)△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( ) A .如果∠C ﹣∠B=∠A ,则△ABC 是直角三角形①②③ ④②①③ ④③① ② ④④①② ③开始后抽取的纸片序号B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.(3分)下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3),2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.45.(3分)已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.206.(3分)若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形8.(3分)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.9.(3分)下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余10.(3分)放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米 D.1300米11.(3分)下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长12.(3分)在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对二、填空题(每空3分,共12分)13.(3分)一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是m.14.(3分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.15.(3分)一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高米.16.(3分)如果直角三角形的三条边分别为4、5、a,那么a2的值等于.三、解答题(共52分)17.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?18.(8分)求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.19.(8分)某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?20.(10分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?21.(10分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,求线段CN长.22.(8分)如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?参考答案一、选择题(每题3分,共36分)1.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.2.(3分)分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.【点评】本题考查了直角三角形的判定.4.(3分)下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3),2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.4【考点】勾股数.【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:(1)3,5,7 不是勾股数,因为32+52≠72;(2)5,15,17 不是勾股数,因为52+152≠172;(3),2,不是勾股数,因为,2,不是正整数;(4)7,24,25 是勾股数,因为72+242=252,且7、24、25是正整数;(5)10,24,26是勾股数,因为102+242=262,且10,24,26是正整数.故选B.【点评】本题考查了勾股数的概念:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:、6、满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…5.(3分)已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.20【考点】勾股定理.【分析】设直角三角形的两直角边分别为3k,4k,则斜边为5k,列出方程求出k,即可解决问题.【解答】解:设直角三角形的两直角边分别为3k,4k,则斜边为5k.由题意3k+4k+5k=36,解得k=3,所以斜边为5k=15.故选C.【点评】本题考查勾股定理、一元一次方程等知识,解题的关键是灵活于勾股定理解决问题,学会设未知数列方程解决问题,属于中考常考题型.6.(3分)若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】可以先作出BC边上的高AD,根据等腰三角爱哦形的性质可得BD的长,在Rt△ADB中,利用勾股定理就可以求出高AD.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=BC=8cm,∴AD==6cm,故选:D.【点评】本题主要考查了勾股定理及等腰三角形的性质,关键是掌握勾股定理和等腰三角形三线合一的性质.7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.8.(3分)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【考点】勾股定理.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.(3分)下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理以及直角三角形的定义一一判断即可.【解答】解:A、正确.∵52+122=132,∴三角形为直角三角形.B、正确.∵三角形的三个内角比为1:2:3,∴三个内角分别为30°,60°,90°,∴三角形是直角三角形.C、错误.∵12+22≠32,∴三角形不是直角三角形.D、正确.∵三角形的两内角互余,∴第三个角是90°,∴三角形是直角三角形.故选C.【点评】本题考查勾股定理的逆定理、三角形的内角和等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.10.(3分)放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米 D.1300米【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵小明用10分到家,小华用24分到家,∴OA=10×50=500(米),OB=24×50=1200(米),∴AB==1300(米).答:小明和小华家的距离为1300米.故选:D.【点评】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.11.(3分)下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长【考点】勾股定理.【分析】利用直角三角形勾股定理进行解题.【解答】解:A,B:直角三角形直角是哪个,未知,故不能得出a2+b2=c2,c=5C:斜边长为5;D:由勾股定理知显然正确.故选D.【点评】考查了直角三角形相关知识以及勾股定理的应用.12.(3分)在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到三角形的形状,则不难求得其各角的关系.【解答】解:因为122+92=152,所以三角形是直角三角形,则∠B+∠C=∠A.故选B.【点评】本题考查了直角三角形的判定及勾股定理逆定理的应用.二、填空题(每空3分,共12分)13.(3分)一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是5m.【考点】勾股定理的应用.【分析】根据题意可知,梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解答】解:∵梯子、地面、墙刚好形成一直角三角形,∴梯脚与墙角的距离==5(m).故答案为:5.【点评】本题考查的是勾股定理在实际生活中的应用,正确应用勾股定理是解题关键.14.(3分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.15.(3分)一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高8米.【考点】勾股定理的应用.【分析】先根据勾股定理求出大树折断部分的高度,再根据大树的高度等于折断部分的长与未断部分的和即可得出结论.【解答】解:由勾股定理得斜边为=5米,则原来的高度为3+5=8米.即电线杆在折断之前高8米.故答案为8.【点评】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术的算法求解.16.(3分)如果直角三角形的三条边分别为4、5、a,那么a2的值等于9或41.【考点】勾股定理.【分析】此题有两种情况,一是当这个直角三角形的斜边的长为5时;二是当这个直角三角形两条直角边的长分别为4和5时,由勾股定理分别求出此时的a2值即可.【解答】解:当这个直角三角形的斜边的长为5时,a2=52﹣42=9;当这个直角三角形两条直角边的长分别为4和5时,a2=52+42=41.故a的值为9或41.故答案为:9或41.【点评】本题考查勾股定理的知识,解答此题的关键是直角三角形的斜边没有确定,所以要进行分类讨论,注意不要漏解,难度一般.三、解答题(共52分)17.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【考点】勾股定理的应用.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.【点评】本题考查了勾股定理的应用,是实际问题但比较简单.18.(8分)求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.【考点】勾股定理.【分析】(1)首先利用勾股定理计算出BC的长,进而得到圆的半径BO长,再利用半圆的面积减去直角三角形面积即可;(2)首先计算出AC的长,再利用勾股定理计算出BC的长,然后利用矩形的面积公式计算即可.【解答】解:(1)∵AB=8,AC=6,∴BC===10,∴BO=5,=AB×AC=×8×6=24,∵S△ABCS半圆=π×52=,=﹣24;∴S阴影(2)∵AD=14,CD=2,∴AC=12,∵AB=13,∴CB===5,=2×5=10.∴S阴影【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.(8分)某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?【考点】勾股定理的应用.【专题】探究型.【分析】过点A作AF⊥CE于点F,由AB=5m,EC=29m可求出EF的长,再由BC=10m可知AE=BC=10m,在Rt△AEF中利用勾股定理即可求出AE的长.【解答】解:过点A作AF⊥CE于点F,∵AB⊥BC,EC⊥BC,∴四边形ABCF是矩形,∵AB=5m,EC=29m,∴EF29﹣5=24m ,∵BC=10m ,∴AE=BC=10m ,在Rt △AEF 中,∵AF=10m ,EF=24m ,∴AE===26m .答:彩带AE 的长是23米.【点评】本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?【考点】勾股定理的逆定理.【分析】由勾股定理逆定理可得△ACD 与△ABC 均为直角三角形,进而可求解其面积.【解答】解:∵42+32=52,52+122=132,即AB 2+BC 2=AC 2,故∠B=90°,同理,∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD =×3×4+×5×12=6+30=36.【点评】熟练掌握勾股定理逆定理的运用,会求解三角形的面积问题.21.(10分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,求线段CN长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,解得:x=3.即线段CN长为3.【点评】此题主要考查了翻折变换的性质,折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.22.(8分)如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?【考点】轴对称-最短路线问题.【专题】计算题;作图题.【分析】此题的关键是确定点M的位置,需要首先作点A的对称点A′,连接点B和点A′,交l于点M,M即所求作的点.根据轴对称的性质,知:MA+MB=A′B.根据勾股定理即可求解.【解答】解:作A关于CD的对称点A′,连接A′B与CD,交点CD于M,点M即为所求作的点,则可得:DK=A′C=AC=10千米,∴BK=BD+DK=40千米,∴AM+BM=A′B==50千米,总费用为50×3=150万元.【点评】此类题的重点在于能够确定点M的位置,再运用勾股定理即可求解.北师大版八年级上期中测试卷(1)一、选择题(有且只有一个正确答案,每小题3分,共39分)1、下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与-2、在ABC △中,34AC BC ==,,则AB 的长是( )A 、5B 、7C 、5或7D 、大于1且小于7 3、在()02-,38, 0, 9, 34……, 2π…, 5…(相邻两个1之间有1个0)中,无理数有( ) A 、2个 B 、3个 C 、4个 D 、5个4、满足73<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、2,1,0,1-C 、3,2,1,0,1,2--D 、3,2,1,0,1-5、若2(a +与|b +1|互为相反数,则a b -的值为( )A 1 C 1 D 、16、下列语句:①1-是1的平方根。
九年级数学上册综合算式练习题代数式运算与方程求解在九年级数学上册中,代数式运算与方程求解是一个重要的章节。
通过学习这一章节,我们可以掌握如何进行代数式的运算,以及如何解方程。
本文将为大家提供一些综合算式练习题,以帮助大家巩固所学知识。
1. 综合算式练习题(1) 化简以下代数式:a) 3x + 2x - 5y + 4yb) 2(a - b) + 3(b - a)c) 4x^2 + 3x + 2x^2 - 5x - 1d) 2(3x - 4) - 5(2x + 1)(2) 展开并化简以下代数式:a) (x + 2)(x - 3)b) (2x - 1)^2c) (2x^2 + 3xy - 5)(x - 2y)d) (3x + 1)(3x - 1) - (2x - 1)(2x + 1)(3) 合并同类项并化简以下代数式:a) 2x^2 - 3x^2 + 4xy - 5xy + x - 2x + 3y - 4yb) (3x - 1)^2 + (2x - 3)(2x + 3)2. 方程求解练习题(1) 解以下方程:a) 2x + 5 = 15b) 3(x - 4) = 21c) 4x^2 - 9 = 0d) 5(x - 3) - 2(x + 1) = x - 10(2) 解以下方程组:a)2x + y = 7x - y = 1b)3x + 2y = 102x - 3y = -7c)4x + 5y = 233x - 2y = 5d)x^2 - 4y^2 = 9x + 2y = 5以上是一些九年级数学上册综合算式练习题,希望能够帮助大家巩固代数式运算和方程求解的知识。
通过反复练习和思考,相信大家能够掌握这些知识,并能够运用到实际问题中。
祝大家学习进步!。
2024年1月九上期末——代数综合1.【东城】26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.2.【西城】26.在平面直角坐标系xOy 中,()1,A t y ,()1,B t y+,()23,C t y +三点都在抛物线224y ax ax =-+(0a >)上.(1)这个抛物线的对称轴为直线________.(2)若132y y y >≥,求t 的取值范围;(3)若无论t 取任何实数,点A ,B ,C 中都至少有两个点在x 轴的上方,直接写出a 的取值范围.3.【海淀】26.在平面直角坐标系xOy 中,点()1,A m -,点()3,B n 在抛物线2(0)y ax bx c a =++>上.设抛物线的对称轴为直线x t =.(1)当2t =时,①直接写出b 与a 满足的等量关系;②比较m ,n 的大小,并说明理由;(2)已知点()0,C x p 在该抛物线上,若对于034x <<,都有m p n >>,求t 的取值范围.4.【朝阳】26.在平面直角坐标系xOy 中,点(x 1,m ),(x 2,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t .(1)若对于x 1=1,x 2=3,有m =n ,求t 的值;(2)若对于t -1<x 1<t ,2<x 2<3,存在m >n ,求t 的取值范围.5.【石景山】26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++>经过点(33)A a c +,.(1)求该抛物线的对称轴;(2)点1(12)M a y -,,2(2)N a y +,在抛物线上.若12c y y <<,求a 的取值范围.6.【丰台】26.在平面直角坐标系xOy 中,点(m +2,1y ),(6,2y )为抛物线22y x mx n =-+上两个不同的点.(1)求抛物线的对称轴(用含m 的式子表示);(2)若12y n y <<,求m 的取值范围.7.【昌平】26.在平面直角坐标系xOy 中,点(0,3),(6,1y )在抛物线()02≠++=a c bx ax y 上.(1)当31=y 时,求抛物线的对称轴;(2)若抛物线()02≠++=a c bx ax y 经过点(-1,-1),当自变量x 的值满足-1≤x ≤2时,y 随x 的增大而增大,求a 的取值范围;(3)当0>a 时,点(m -4,2y ),(m ,2y )在抛物线c bx ax y ++=2上.若2y <1y <c ,请直接写出m 的取值范围.8.【通州】26.在平面直角坐标系xOy 中,()11,P x y ,()22,Q x y 是抛物线2221y x mx m =-+-上任意两点.(1)求抛物线的顶点坐标(用含m 的式子表示);(2)若12x m =-,25x m =+,则1y ______2y ;(用“<”,“=”,或“>”填空)(3)若对于114x -≤<,24x =,都有12y y ≤,求m 的取值范围.9.【房山】26.在平面直角坐标系xOy 中,点(1)m ,,(3)n ,在抛物线24(0)y ax bx a =++>上,设抛物线的对称轴为x t =.(1)当m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点00()(3)x n x ≠,在抛物线上,若4m n <<,求t 的取值范围及0x 的取值范围.10.【大兴】26.在平面直角坐标系xOy 中,点(2,m )在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x=t .(1)当m =c 时,求t 的值;(2)点(-1,y 1),(3,y 2)在抛物线上,若c <m ,比较y 1,y 2的大小,并说明理由.11.【门头沟】26.在平面直角坐标系xOy 中,点M (1x ,1y ),N (2x ,2y )为抛物线2y ax bx c=++(a >0)上任意两点,其中12x x <.(1)若抛物线的对称轴为x =2,当12x x 、为何值时,12y y c ==;(2)设抛物线的对称轴为x =t ,若对于124x x +>,都有12y y <,求t 的取值范围.12.【燕山】26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.13.【顺义】26.在平面直角坐标系xOy 中,抛物线y =x 2﹣2ax +a 2﹣4与x 轴交于A ,B 两点(点A 在点B 左侧).(1)若a =1,求抛物线的对称轴及A ,B 两点的坐标;(2)已知点(3﹣a ,y 1),(a +1,y 2),(﹣a ,y 3)在该抛物线上,若y 1,y 2,y 3中有且仅有一个大于0,求a 的取值范围.14.【密云】26.在平面直角坐标系xOy 中,点(2,m )和(5,n )在抛物线y =x 2+2bx 上,设抛物线的对称轴为x=t .(1)若m=0,求b 的值;(2)若mn <0,求该抛物线的对称轴t 的取值范围.15.【平谷】26.在平面直角坐标系xOy 中,二次函数mx x y 22-=的图象上两个点A ),(11y x ,B ),(22y x ,点A 、B 之间的部分(包含点A 、点B )记作图象G ,图象G 上y 的最大值与最小值的差记作y G .(1)求这个二次函数的对称轴(用含m 的代数式表示);(2)当m=1,x 1=0,x 2=3时,求y G 的值;(3)当121-=m x ,122+=m x 时,恒有y G >21y y -,求m 的取值范围.。
2021年春九年级数学中考一轮复习《代数式》自主复习达标测评(附答案)1.已知f(1)=2(取1×2计算结果的末位数字),f(2)=6(取2×3计算结果的末位数字),f(3)=2(取3×4计算结果的末位数字),…,则f(1)+f(2)+f(3)+…+(2020)的值为()A.2020B.4040C.4042D.40302.如图所示在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从3这点开始跳,则经过2021次后它停的点对应的数为()A.5B.3C.2D.13.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x分钟,再乘车y分钟,则小明家离书店的路程是()千米.A.45x+4y B.4x+45y C.4x+y D.x+y4.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……第2020个单项式是()A.2020a B.﹣2020a C.a2020D.﹣a20205.计算1+2﹣3﹣4+5+6﹣7﹣8+…+2017+2018﹣2019﹣2020的值为()A.0B.﹣1C.2020D.﹣20206.QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490,…若某用户的空间积分为1000,则他的等级是第()级.A.15B.16C.17D.187.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是2023,则n等于()A.337B.338C.339D.3408.有一列数a1,a2,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2020等于()A.2B.﹣1C.D.20209.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…以此类推,则a2021的值为()A.2020B.﹣2020C.﹣1010D.101010.如图,按照所示的运算程序计算:若开始输入的x值为10,则第1次输出的结果为5,第2次输出的结果为8,…,第2020次输出的结果为()A.1B.2C.4D.611.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2.已知小长方形纸片的宽为a,长为4a,则S2﹣S1=.(结果用含a的代数式表示)12.如图,∠MON=30°,点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,…在射线OM上,且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,以此类推,若OA1=1,则△A2021B2021A2022的边长为.13.如图所示,以一根火柴棍为一边,拼成一排由正方形组成的图形,如果图形中含有50个正方形,则需要根火柴棍.14.观察下列式子:a1==﹣;a2==﹣;a3==﹣;a4==﹣;…,按此规律,计算a1+a2+a3+…+a2020=.15.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是.16.一组按规律排列的式子:,,,,,其中第8个式子是,第n个式子是(用含的n式子表示,n为正整数).17.已知a表示一个一位数,b表示一个两位数,把a放到b的左边组成一个三位数,则这个三位数可以表示为.18.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.19.某种品牌的彩电降价30%以后,每台售价为a元,则该品牌彩电每台原价为.20.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+2|+(b﹣3)2=0.(1)求点A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程的解.①求线段BC的长;②在数轴上是否存在点P,使P A+PB=BC?若存在,求出点P对应的数;若不存在,请说明理由.21.下列是一些两位数减法运算:21﹣12=9,31﹣13=18,32﹣23=9,42﹣24=18,14﹣41=﹣27,51﹣15=36,26﹣62=﹣36,…观察上述算式及其计算结果,对两位数减法运算中的某种特殊形式进行探究:(1)请另外写出一个符合上述规律的算式;(2)用字母表示你所观察到的规律;(3)利用整式的运算说明为什么会有这样的规律;(4)两位数的加法运算中也有类似的规律,请用字母表示该规律.22.(1)观察猜想(直接写出横线处的多项式)(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4,(1﹣x)(1+x+x2+x3+x4)=,…(1﹣x)(1+x+x2+…+x n﹣2+x n﹣1)=.(2)类比探索(直接写出横线处的多项式)a2﹣b2=(a﹣b)(a+b),a3﹣b3=(a﹣b)(a2+ab+b2)=(a﹣b)(a3+a2b+ab2+b3)(3)应用规律,拓展延伸①32﹣m5=(2﹣m)•().(直接写出横线处的多项式)②计算:1+2+22+…+22018+22019+22020.23.数学中,运用整体思想方法在求代数式的值时非常重要.例如:已知a2+2a=2,则代数式2a2+4a+3=2(a2+2a)+3=2×2+3=7.请你根据以上材料解答以下问题:(1)若x2﹣3x=4,求1﹣x2+3x的值.(2)当x=1时,代数式px3+qx﹣1的值是5,求当x=﹣1时,代数式px3+qx﹣1的值.(3)当x=2020时,代数式ax5+bx3+cx+6的值为m,直接写出当x=﹣2020时,代数式ax5+bx3+cx+6的值.(用含m的代数式表示)24.观察下面的等式,发现其中的规律,并解决问题.(1)①1=12;②1+3=22;③1+3+5=32;④1+3+5+7=42;……请写出这组式子反映的一般结论:1+3+5+7+…+(2n﹣1)=.(2)①1==1;②1+2==3;③1+2+3==6;④1+2+3+4==10;……请写出这组式子反映的一般结论:1+2+3+4+…+n=.(3)根据(1)和(2)中发现的规律求下列各式的值.①A=1+3+5+7+…+2019②B=1+2+3+4+…+2020③C=2+4+6+8+…+2020,并直接写出A,B,C三个式子之间的关系.25.将正方形ABCD(如图1)作如下划分,第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH再划分,得图3,则图3中共有9个正方形;(1)若把左上角的正方形依次划分下去,则第100次划分后,图中共有个正方形;(2)继续划分下去,第n次划分后图中共有个正方形;(3)能否将正方形ABCD划分成有2020个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.参考答案1.解:根据数字的变化可知:f(1)=2(取1×2计算结果的末位数字),f(2)=6(取2×3计算结果的末位数字),f(3)=2(取3×4计算结果的末位数字),f(4)=0(取4×5计算结果的末位数字),f(5)=0,f(6)=2,f(7)=6,…,发现规律:2,6,2,0,0五个数一个循环,所以2020÷5=404,所以404(2+6+2+0+0)=4040,所以f(1)+f(2)+f(3)+…+(2020)的值为4040.故选:B.2.解:第1次跳后落在5上;第2次跳后落在2上;第3次跳后落在1上;第4次跳后落在3上;…4次跳后一个循环,依次在5,2,1,3这4个数上循环,∵2021÷4=505…1,∴应落在5上.故选:A.3.解:根据题意知,4×+45×=x+y.故选:D.4.解:∵一列单项式为:a,﹣a2,a3,﹣a4,a5,﹣a6,…,∴第n个单项式为(﹣1)n+1•a n,当n=2020时,这个单项式是(﹣1)2020+1•a2020=﹣a2020,故选:D.5.解:∵1+2﹣3﹣4=﹣4,5+6﹣7﹣8=﹣4,即每四项结果为﹣4,∵2020÷4=505,∴1+2﹣3﹣4+5+6﹣7﹣8+…+2013+2014﹣2015﹣2016=﹣4×505=﹣2020.故选:D.6.解:根据题意可知:第10级的积分是:90=9×10=32×10=(10﹣7)2×10,第11级的积分是:160=16×10=42×10=(11﹣7)2×10,第12级的积分是:250=25×10=52×10=(12﹣7)2×10,第13级的积分是:360=36×10=62×10=(13﹣7)2×10,第14级的积分是:490=49×10=72×10=(14﹣7)2×10,…,设第n级积分为1000分,则(n﹣7)2×10=1000,解得n=17.所以他的等级是第17级.故选:C.7.解:由题目中的数据可知,第一行是一些连续的奇数,第二行奇数个数为奇数,偶数个数为偶数,第二行的第m个数为1+3(m﹣1)=3m﹣2,令3m﹣2=2023,得m=675,∵第一行和第二行第n个相同的数是2023,∴n=(675+1)÷2=338,故选:B.8.解:∵a1=2,∴a2=1﹣=;a3=1﹣2=﹣1;∴a4=1﹣(﹣1)=2;…,2020÷3=673…1,∴a2020等于2.故选:A.9.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2021=﹣+1=﹣1011+1=﹣1010,故选:C.10.解:根据运算程序可知:开始输入的x值为10,第1次输出的结果为5,第2次输出的结果为8,第3次输出的结果为4,第4次输出的结果为2,第5次输出的结果为1,第6次输出的结果为4,…,发现:从第3次输出的结果开始,4,2,1,三个数循环,所以2020﹣2=2018,2018÷3=672…2,所以第2020次输出的结果为2.故选:B.11.解:设长方形ABCD的长为m,则S2﹣S1=(m﹣3a)×4a﹣(m﹣4a)×4a=(m﹣3a﹣m+4a)×4a=a×4a=4a2.故答案为:4a2.12.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠OB1A1=∠B1A1A2﹣∠MON=30°,∴∠OB1A1=∠MON,∴A1B1=OA1=1,同理可得,A2B2=OA2=2,A3B3=OA3=4=22,……,∴△A2021B2021A2022的边长=22020,故答案为:22020.13.解:1个正方形中一共有4根火柴棍,2个正方形中一共有3+4=7根火柴棍,3个正方形中一共有3+3+4=10根火柴棍,…n个正方形中火柴棍的个数是4+3(n﹣1)=3n+1,图形中含有50个正方形,可得:3×50+1=151,故答案为:151.14.解:,,,,…,可得:,a1+a2+a3+…+a2020==,故答案为:.15.解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故答案为:2S2﹣S.16.解:∵=(﹣1)2•,﹣=(﹣1)3•,=(﹣1)4•,…∴第8个式子是,第n个式子为:(﹣1)n+1•.故答案是:;(﹣1)n+1•.17.解:这个三位数可以表示为100a+b.故答案是:100a+b.18.解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.19.解:由题意可得,该品牌彩电每台原价为:a÷(1﹣30%)=a÷0.7=元,故答案为:元.20.解:(1)∵|a+2|+(b﹣3)2=0,∴a+2=0,b﹣3=0,解得a=﹣2,b=3,即点A,B所表示的数分别为﹣2,3;(2)①,解得x=﹣6,∴点C表示的数为﹣6,∵点B表示的数为3,∴BC=3﹣(﹣6)=3+6=9,即线段BC的长为9;②存在点P,使P A+PB=BC,设点P表示的数为m,当m<﹣2时,(﹣2﹣m)+(3﹣m)=9,解得m=﹣4,即当点P表示的数为﹣4时,使得P A+PB=BC;当﹣2≤m≤3时,[m﹣(﹣2)]+(3﹣m)=m+2+3﹣m=5≠9,故当﹣2≤m≤3时,不存在点P使得P A+PB=BC;当m>3时,[m﹣(﹣2)]+(m﹣3)=9,解得m=5,即当点P表示的数为5时,使得P A+PB=BC;由上可得,点P表示的数为﹣4或5时,使得P A+PB=BC.21.解:(1)由题意可得,65﹣56=9;(2)(10a+b)﹣(10b+a)=9(a﹣b);(3)(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b);(4)(10a+b)+(10b+a)=11(a+b).22.解:(1)(1﹣x)(1+x+x2+x3+x4)=1﹣x5;(1﹣x)(1+x+x2+…+x n﹣2+x n﹣1)=1﹣x n;故答案为:1﹣x5;1﹣x n;(2)a4﹣b4=(a﹣b)(a3+a2b+ab2+b3),故答案为:a4﹣b4;(3)①32﹣m5=(2﹣m)•(16+8m+4m2+2m3+m4),故答案为:16+8m+4m2+2m3+m4;②原式=﹣(1﹣2)(1+2+22+…+22018+22019+22020)=﹣(1﹣22021)=22021﹣1.23.解:(1)∵x2﹣3x=4,∴1﹣x2+3x=1﹣(x2﹣3x)=1﹣4=﹣3.(2)当x=1时,代数式px3+qx﹣1的值是5,即p+q﹣1=5,∴p+q=6.∴当x=﹣1时,px3+qx﹣1=﹣p﹣q﹣1=﹣(p+q)﹣1=﹣6﹣1=﹣7.(3)∵当x=2020时,代数式ax5+bx3+cx+6的值为m,即a×20205+b×20203+c×2020+6=m,∴a×20205+b×20203+c×2020=m﹣6,∴x=﹣2020时,ax5+bx3+cx+6=a×(﹣2020)5+b×(﹣2020)3+c×(﹣2020)+6=﹣(a×20205+b×20203+c×2020)+6=﹣(m﹣6)+6=﹣m+12.24.解:(1)由题意可得,1+3+5+7+…+(2n﹣1)=n2,故答案为:n2;(2)由题意可得,1+2+3+4+…+n=,故答案为:;(3)①A=1+3+5+7+…+2019=1+3+5+…+(2×1010﹣1)=10102=1020100;②B=1+2+3+4+…+2020==2021×1010=2041210;③C=2+4+6+8+...+2020=(1+2+3+4+...+2020)﹣(1+3+5+ (2019)=2041210﹣1020100=1021110,A,B,C三个式子之间的关系是C=B﹣A.25.解:(1)∵第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,∴第n次可得(4n+1)个正方形,∴第100次可得正方形:4×100+1=401(个);故答案为:401;(2)由(1)得:第n次可得(4n+1)个正方形,故答案为:4n+1;(3)不能,∵4n+1=2020,解得:n=504.75,∴n不是整数,∴不能将正方形ABCD划分成有2020个正方形的图形。
代数综合专题西城区26.在平面直角坐标系xOy中,抛物线y=x2–2m x–2m–2.(1)若该抛物线与直线y= 2交于A,B两点,点B在y轴上.求该抛物线的表达式及点A的坐标;(2)横坐标为整数的点称为横整点.①将(1)中的抛物线在 A,B两点之间的部分记作G1(不含A,B两点),直接写出G1上的横整点的坐标;②抛物线y=x2–2m x–2m–2与直线y=–x–2交于C,D两点,将抛物线在C,D两点之间的部分记作G2(不含C,D两点),若G2上恰有两个横整点,结合函数的图象,求m的取值范围.26.解:(1)∵抛物线y=x2-2m x-2m-2与直线y=2交于A,B两点,点B在y轴上,∴点B的坐标为(0,2).∴-2m - 2= 2.∴m = -2.∴抛物线的表达式为y=x2+4x+ 2.∵A,B两点关于直线x =-2对称,∴点A的坐标为(-4,2).(2)①y=x2+4x+2的图象,如图1所示.G1上的横整点分别是(-3,-1),(-2,-2),(-1,-1).②对于任意的实数m,抛物线y=x2-2m x-2m–2与直线y= -x-2总有一个公共点(-1,-1),不妨记为点C.当m≤-1时,若G2上恰有两个横整点,则横整点的横坐标为-3,-2,如图2.∴ -2≤32m<-.当m>-1时,若G2上恰有两个横整点,则横整点的横坐标为0,1,如图3.∴12m<≤1.图1图2 图3综上,G2恰有两个横整点,m的取值范围是-2≤32m<-或12m<≤1.··························································································6分东城区26 .在平面直角坐标系xOy中,抛物线y=a-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围海淀区.26在平面直角坐标系xOy中,已知抛物线G:2240)y ax ax a=-+≠(.(1)当a =1时,①抛物线G 的对称轴为x =_____________;②若在抛物线G 上有两点12(2,),(,)y m y ,且21y y >,则m 的取值范围是____________;(2)抛物线G 的对称轴与x 轴交于点M ,点M 与点A 关于y 轴对称,将点M 向右平移3个单位得到点B ,若抛物线G 与线段AB 恰有一个公共点,结合图象,求a 的取值范围.26.解:(1)①1; ②m >2或m <0;(2)∵抛物线G :224y ax ax =-+的对称轴为x =1,且对称轴与x 轴交于点M , ∴点M 的坐标为(1,0). ∵点M 与点A 关于y 轴对称, ∴点A 的坐标为(-1,0). ∵点M 右移3个单位得到点B , ∴点B 的坐标为(4,0).依题意,抛物线G 与线段AB 恰有一个公共点, 把点A (-1,0)代入224y ax ax =-+可得43a =-;把点B (4,0)代入224y ax ax =-+可得12a =-;把点M (1,0)代入224y ax ax =-+可得4a =. 根据所画图象可知抛物线G 与线段AB 恰有一个 公共点时可得 41432a a -<≤-=或.大兴区25.在平面直角坐标系xOy 中,抛物线与x 轴的交点为A , B (点A 在点B 的左侧).(1)求点A,B 的坐标;(2)横、纵坐标都是整数的点叫整点. ①直接写出线段AB 上整点的个数;沿x 翻折,得到新抛物线,直接写出新抛物线在x 轴上方的部分与线段AB所围成的区域内(包括边界)整点的个数.25.解:(1)得中,令)(在,01-1412=-=y x y 1,321-==x x ……………………………………………………………..1分∴点A 的坐标为(-1,0),点B 的坐标为(3,0)………………………..2分 (2)①5;……………………………………………………………………..3分②6. ……………………………………………………………………..5分石景山26.在平面直角坐标系xOy 中,抛物线24(0)y ax ax c a =-+≠与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B .与x 轴,y 轴分别交于点C ,D .(1)求抛物线的对称轴;(2)若点A 与点D 关于x 轴对称, ①求点B 的坐标;②若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.26.解:(1)∵24y ax ax c =-+2(2)4a x a c =--+,∴抛物线的对称轴是直线2x =. ………………………… 2分 (2)①∵直线335y x =-与x 轴,y 轴分别交于点C ,D , ∴点C 的坐标为(5,0),点D 的坐标为(0,3)-. ∵抛物线与y 轴的交点A 与点D 关于x 轴对称, ∴点A 的坐标为(0,3).∵将点A 向右平移2个单位长度,得到点B ,∴点B 的坐标为(2,3). ………………………… 3分 ②抛物线为243(0)y ax ax a =-+≠,顶点为(2,34)P a -. (ⅰ)当0a >时,如图1.令5x =,得25203530y a a a =-+=+>, 即点(5,0)C 总在抛物线上的点(5,53)E a +的下方. ∵P B y y <∴点(2,3)B 总在抛物线顶点P 的上方,结合函数图象,可知当0a >时,抛物线与线段BC 恰有一个公共点.(ⅱ)当0a <时,如图2. 当抛物线过点(5,0)C 时, 252030a a -+=,解得35a =-.结合函数图象,可得35a -≤.综上所述,a 的取值范围是35a -≤或0a >. …………………… 6分丰台区25.在平面直角坐标系xOy 中,抛物线1C :221y mx mx m =++-沿x 轴翻折得到抛物线2C . (1)求抛物线2C 的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.① 当1m =时,求抛物线1C 和2C 围成的封闭区域内(包括边界)整点的个数;② 如果抛物线1C 和2C 围成的封闭区域内(包括边界)恰有7个整点,求出m 的取值范围.25.(1)顶点坐标为(1-,1);…….…....………….....…………….…...….….....…………2分 (2)①当1m =时,21:2C y x x =+,22:2C y x x =--. ….…...….….....…………3分 根据图象可知,1C 和2C 围成的区域内(包括边界)整点有5个.…4分②抛物线在1C 和2C 围成的区域内 (包括边界) 恰有7个整点,结合函数图象,可得抛物线与x 轴的一个交点的横坐标的取值范围为 1≤2x <.将(1,0)代入221y mx mx m =++-,得到 14m =, …….....………5分 将(2,0)代入221y mx mx m =++-,得到 19m =,结合图象可得 19m <≤14. ….…...…..….....………….........………6分顺义区26.在平面直角坐标系 中,抛物线与 轴交于点A ,将点A 向左平移3个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含m 的式子表示); (2)求抛物线的对称轴;(3)已知点P (-1,-m ),Q (-3,1).若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m 的取值范围.26.解:(1)依题意得:A (0,-m ).………………………………………………… 1分 ∴B (-3,-m ). ………………………………………………………… 2分 (2)∵点A ,B 关于抛物线的对称轴对称, ∴抛物线的对称轴为x =32-;………………………………………… 4分(3)当m >0时,点A (0,-m )在y 轴负半轴, 此时,点P ,Q 位于抛物线内部(如图1).所以,抛物线与线段PQ 无交点. ……………………… 5分当m <0时,点A (0,-m )在y 轴正半轴,当AQ 与x 轴平行,即A (0,1)时(如图2), 图1 抛物线与线段PQ 恰有一个交点Q (-3,1).6分26轴交于点A .(1)直接写出点A 的坐标;(2)点A 、B 关于对称轴对称,求点B 的坐标;(3)已知点(4,0)P ,PQ 恰有两个公共点,结合函数图象,求a 的取值范围.26.解:(1)()0,3-; ················································································· 1 (2)∵212b ax a a-=-=-=; ∴()2,3B -. ··········································································· 2 (3)当抛物线过点P (4,0)时,38a =, ················································ 3 ∴8,03Q ⎛⎫- ⎪⎝⎭.此时,抛物线与线段PQ有两个公共点.当抛物线过点1(,0)Qa-时,a=1,此时,抛物线与线段PQ有两个公共点.∵抛物线与线段PQ恰有两个公共点,∴318a≤≤. (5)当抛物线开口向下时,3a<-. (6)综上所述,当318a≤≤或3a<-时,抛物线与线段PQ恰有两个公共点.昌平区26.在平面直角坐标系xOy中,抛物线2y ax bx c=++与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是________;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.26.(1)①对称轴是:x=1.…………………………………………………………………… 1分②b=-2a.…………………………………………………………………… 3分(2)-2≤a<-1或1<a≤2.……………………………………………………………………6分门头沟26.在平面直角坐标系xOy中,抛物线()2420y ax ax a a=-+≠的顶点为P,且与y轴交于点A,与直线y a=-交于点B,C(点B在点C的左侧).(1)求抛物线()2420y ax ax a a=-+≠的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当2a=时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.房山区.在平面直角坐标系xOy 中,抛物线1+2-2-=2m mx mx y 与x 轴交于点A ,B . (1)若2=AB ,求m 的值;(2)过点)20(,P 作与x 轴平行的直线,交抛物线于点M ,N .当2≥MN 时,求m 的取值范围.26. (1)抛物线对称轴为直线1=22--=mmx . …………1分 ⸪点A 、B 关于直线1=x 对称,AB =2∴ 抛物线与x 轴交于点(0,0)、(2,0).…………2分将(0,0)代入1+2-2-=2m mx mx y 中, 得0=1+2-m 即21=m . …………3分 (2)抛物线1+2-2-=2m mx mx y 与x 轴有两个交点∴0>Δ 即()0>1+-2(4-2-2)m m m …………4分 解得: 0<31>m m 或①若0>m ,开口向上,如图26-1当2≥MN 时,有2≤1+2-m 解得21-≥m 图26-1结合※可得31>m …………5分②若0<m ,开口向下,如图26-2当2≥MN 时,有2≥1+2-m 解得21-≤m 结合※可得21-≤m …………6分 综上所述m 的取值范围为31>m 或21-≤m 图26-2密云区26. 在平面直角坐标系xOy 中,抛物线2258y ax ax a =-++(0a ≠). (1)写出抛物线顶点的纵坐标 (用含a 的代数式表示);(2)若该抛物线与x 轴的两个交点分别为点A 和点B ,且点A 在点B 的左侧,AB =4. ① 求a 的值;② 记二次函数图象在点 A ,B 之间的部分为W (含 点A 和点B ),若直线 y kx b =+ (0k ≠)经过(1,-1),且与 图形W 有公共点,结合函数图象,求 b 的取值范围.25. (1)4a +8 ………………………………1分(2)①解:∵抛物线的对称轴是x =1又∵ 抛物线与x 轴的两个交点分别为点A 和点B ,AB =4∴ 点A 和点B 各距离对称轴2个单位 ∵ 点A 在点B 的左侧∴A (-1,0),B (3,0) ………………………………3分 ∴将B (3,0)代入2258y ax ax a =-++ ∴9a -6a +5a+8=0a=-1 ………………………………4分②当 y kx b =+(0k ≠)经过(1,-1)和A (-1,0)时, 当 y kx b =+(0k ≠)经过(1,-1)和B (3,0)时, ∴………………………………6分朝阳区26.在平面直角坐标系xOy 中,抛物线2y ax bx =+经过点(3,3) . (1)用含a 的式子表示b ;(2)直线4+4y x a =+与直线4y =交于点B ,求点B 的坐标(用含a 的式子表示);(3)在(2)的条件下,已知点A (1,4),若抛物线与线段A B 恰有一个公共点,直接写出10k b k b +=-⎧⎨-+=⎩12b =-130k b k b +=-⎧⎨+=⎩32b =-1322b b ≥-≤-或a(a<0)的取值范围.通州区26.在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.26. (1)顶点坐标为()·····1分(2)·····2分·····3分(3)如图1抛物线顶点在线段上时,............................... 4分如图2抛物线顶过点时,·····5分综上: 或····6分燕山区26.在平面直角坐标系xOy 中,抛物线2221y x mx m =-+-. (1) 求抛物线顶点C 的坐标(用含m 的代数式表示);(2) 已知点A (0,3),B (2,3),若该抛物线与线段AB 有公共点,结合函数图象,求出m 的取值范围.26.解:(1) 2221y x mx m -+-==2()1x m --∴抛物线顶点为C (m ,-1). ………………………2分(2)把A (0,3)的坐标代入2221y x mx m =-+-得231m -=, 解得 2m ±=.把B (2,3)的坐标代入2221y x mx m -+-=得2232221m m -⨯+-=, 即240m m -=, 解得 0m =,或4m =.结合函数图象可知:20m -≤≤,或24m ≤≤. ………………………6分。
中考专题复习-代数篇【整式篇】【学生总结-幂运算公式】 (1) (2) (3) (4)2、若32=n a ,则n a 6= .3、若 3m ,2m y x == 则 =+y x m ____, =+y 2x 3m =______.4、计算:()()()22245+•+•+b b b ().)2y -x (2y)-x (2y -x 432••【换指数】计算:(-2)1999+(-2)200020102009)532()135(⨯【整体带入】变式3、若ab 2=-6 ,则-ab(a 2b 5-ab 3-b)的值为平方差公式公式: ( a+b)(a-b)= a 2-b 2语言叙述:两数的 和乘以这两个数的差等于这两个数的平方差 , . 。
公式结构特点:左边: (a+b)(a-b)右边: a 2-b 2完全平方公式公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2语言叙述:两数的 完全平方和(差)等于这两个数各自平方和与这两个数乘积2倍的和(差)。
,. 。
公式结构特点:左边: (a+b)2; (a-b)2右边:a 2+2ab+b 2; a 2-2ab+b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。
公式变形1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2= 一、计算下列各题:2)(y x + 2)23(y x - 2)12(--t 5、2)313(c ab +-【十字相乘法】(二次项系数为1)232++x x 232+-x x 322-+x x 322--x x(二次项系数不为1)2522++x x 3522--x x 20322--x x 7522-+x x【分式篇】【分式加减法】例.(1)3b b x x + 242)2(2---x x x例.计算 (1)mm -+-329122 (2)a-b+22b a b +变式练习 1.计算:(1) (2)xx x ----13132(3)222x x x +--2144x x x --+ (4)++y x 1yx -11、计算:(1)))(())((a b c b ca cb b a b a --++--+ (2)x x x x ---3)3(32(3)22n m nn m m n m m ---++ (4) a -242a --【分式乘除法】分子分母因式分解→约分→计算例1.计算 (1)y x yz z xy 32982-•- (2)y x yx y x y x y x +-•-+÷-222)(1计算:(1)⎪⎪⎭⎫ ⎝⎛-÷x y y x 346342, (2)xy x xy xy y x y x ++÷++-22222224.【分式混合计算】例.计算:(1))(a ab a b a 222-2a b a · 1-2a 12+++ (2) 4421642++-÷-x x x x变式练习 1.计算(1)⎪⎭⎫ ⎝⎛+-÷-111122x x x (2)x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222【二次根式篇】【知识点一】:二次根式 1、a 有意义的条件:a 0≥2、二次根式的非负性:①⎩⎨⎧<-≥==0a ,a 0a ,a |a |a 2②0a ≥3、最简二次根式;①被开方数不含能开得尽方的因数和因式; ②被开方数不含分母.4、二次根式的乘除法法则:()0,0a b ab a b =≥≥g()0,0a a a b b b=≥≥例题讲解:例1:a 3-有意义,a 的取值范围____________; 2:已知y=2x -+2x -+5,求=yx_____________; 3:21--=x x y 在实数范围内有意义,x 应满足 ; 例2:02)2(2=++-y y x ,则xy 的值。