向心力习题课 绳杆模型
- 格式:ppt
- 大小:623.50 KB
- 文档页数:4
圆周运动绳杆模型1圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动。
小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m rv 2,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力).类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 。
(杆既可以提供拉力,也可提供支持力或侧向力。
) ①当v =0 时,杆对小球的支持力 小球的重力;②当0〈v <gr 时,杆对小球的支持力 于小球的重力;③当v =gr时,杆对小球的支持力 于零; ④当v >gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道。
1、圆周运动中绳模型的应用【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。
求在圆形轨道最高点B【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用 【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0。
4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3。
0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )2vR A 。
“绳模型”与“杆模型”【例题1】 (多选)如图甲,小球用不可伸长的轻绳连接后绕固定点O 在竖直面内做圆周运动,小球经过最高点时的速度大小为v ,此时绳子的拉力大小为F T ,拉力F T 与速度的平方v 2的关系如图乙所示,图象中a 、b 为已知量,重力加速度g 已知,以下说法正确的是( )A .a 与小球的质量无关B .b 与小球的质量无关 C.b a 只与小球的质量有关,与圆周轨道半径无关 D .利用a 、b 和g 能够求出小球的质量和圆周轨道半径[答案] AD【例题2】 小球在如图甲所示的竖直放置的光滑圆形管道内做圆周运动.当小球运动到圆形管道的最高点时,管道对小球的弹力与小球此时的速度平方的关系如图乙所示(取竖直向下为正方向).MN 为通过圆心的一条水平线.不计小球半径、管道内径,重力加速度为g .则下列说法正确的是( )A .管道所在圆的半径为b 2gB .小球的质量为a gC .小球在MN 以下的管道中运动时,内侧管壁对小球可能有作用力D .小球在MN 以上的管道中运动时,外侧管壁对小球一定有作用力[答案] B轻绳、轻杆系一小球在竖直平面内做圆周运动,小球通过最高点的临界条件(做完整圆周运动的条件)的差别,源于绳、杆弹力的差别.(1)绳模型:在最高点绳子只能产生沿绳收缩方向的拉力,拉力最小值为零,此时小球的重力提供向心力.小球在竖直放置的光滑圆环内侧做圆周运动符合此模型.(2)杆模型:在最高点,杆对小球可以产生向下的拉力,也可以产生向上的支持力,故小球在最高点时受到的合力的最小值为零.小球在竖直放置的光滑细管中做圆周运动符合此模型.【例题3】(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图象如图乙所示.则( )A .小球的质量为aR bB .当地的重力加速度大小为R bC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等[答案] ACD【例题4】如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若2v小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为时,每根轻绳的拉力大小为( )A .3mgB .433mgC .3mgD .23mg 解析:选A.【例题5】(多选)长为L 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v ,下列说法中正确的是( )A .当v 的值为gL 时,杆对小球的弹力为零B .当v 由gL 逐渐增大时,杆对小球的拉力逐渐增大C .当v 由gL 逐渐减小时,杆对小球的支持力逐渐减小D .当v 由零逐渐增大时,向心力也逐渐增大解析:选ABD.【例题6】如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上.物块质量为M ,到小环的距离为L ,其两侧面与夹子间的最大静摩擦力均为F .小环和物块以速度v 向右匀速运动,小环碰到杆上的钉子P 后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为g .下列说法正确的是( )A .物块向右匀速运动时,绳中的张力等于2FB .小环碰到钉子P 时,绳中的张力大于2FC .物块上升的最大高度为2v 2gD .速度v 不能超过(2F -Mg )L M解析:选D【例题7】(多选)如图甲所示,细绳下端栓一小物块,上端固定在A 点并与力传感器相连.给物块一个水平速度,使其在竖直平面内做圆周运动,测得绳的拉力F 随时间t 的变化关系如图乙所示(F 0为已知).不考虑空气阻力,已知重力加速度为g .根据题中所给的信息,可以求得的物理量有( )A .物块的质量B .细绳的长度C .物块经过最高点的速度大小D .物块经过最低点的加速度大小解析:选AD.【例题8】如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s 解析:选CD。
圆周运动中的临界问题专题训练一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m rv 2,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力).类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球的支持力于小球的重力;③当v=gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球提供力.类此模型:竖直平面内的管轨道.1、圆周运动中绳模型的应用【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点 B 时恰好对轨道无压力。
求在圆形轨道最高点B 时的速度大小。
【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?vR【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB.小球到达最高点的速度可能为0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。
绳杆模型知识点总结1. 绳杆模型的基本原理绳杆模型假设绳子或杆子足够细长和柔软,可以被简化为一条线或一根棍子。
在这种假设下,我们可以忽略其质量和其自身的刚度,只考虑它们所受到的拉力和压力。
这样一来,我们可以将绳子或杆子看作一种延伸的点质量,从而简化了问题的分析和计算。
2. 绳杆模型的应用绳杆模型可以应用于各种物理问题中。
其中一个经典的例子就是钟摆问题。
在这个问题中,我们可以用绳杆模型来描述钟摆线上的细绳和钟摆的钢杆。
另外,绳杆模型还可以应用于弦乐器和建筑物等系统的分析中。
3. 绳杆模型的基本方程绳杆模型的基本方程可以由牛顿第二定律推导得出。
对于细绳来说,可以将其视为一种只能受到拉力的物体。
而对于杆来说,可以将其视为一种只能受到压力作用的物体。
因此,我们可以将绳和杆的力学性质用拉力和压力来描述,而不需要考虑其质量和刚度。
4. 绳杆模型的应力和应变在应用绳杆模型解决物理问题时,我们需要考虑绳和杆所受到的应力和应变。
在受力分析中,我们需要根据受力方向和大小来计算绳和杆所受到的拉力和压力。
而在应变分析中,我们需要考虑绳和杆的形变以及其材料的性质,从而确定其应变情况。
5. 绳杆模型的动力学在动力学分析中,我们可以用绳杆模型来描述系统的运动情况。
例如,在钟摆问题中,我们可以用绳杆模型来描述钟摆的摆动运动,从而确定其摆动周期和频率。
此外,绳杆模型还可以应用于建筑物和桥梁等结构的动力学分析中,用来确定它们的振动模态和固有频率。
6. 绳杆模型的应用案例绳杆模型的应用案例非常广泛。
其中一个经典的案例就是悬索桥的设计。
在悬索桥的设计中,工程师需要考虑到细绳和杆的受力情况,从而确定桥梁的结构和稳定性。
另外,绳杆模型还可以应用于舞台上吊横幅和灯光设备等系统的设计中,用来确定吊索和支杆的受力情况。
7. 绳杆模型的优点和局限绳杆模型的优点在于其简化了问题的分析和计算。
由于绳和杆可以被视为线和点,因此可以忽略其复杂的形状和材料性质,从而简化了问题的分析。
圆周运动中绳模型和杆模型的一般解析一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。
现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。
(2)当能通过最高点时,绳子拉F 。
解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用,故,由其做圆周运动得:L v m mg 2= 故 gL v =(2)由分析得,当小球到最高点时速度gL v v =>'时,则,mg Lmv F -=2' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。
二:杆模型:若一硬质轻杆长L ,其一端有一质量m的小球(可看成质点)。
现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。
(2)当能通过最高点时,杆对小球的作用力F 。
解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。
(2)①由绳模型可知,当小球通过最高点速度gL v =时,恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。
②当小球通过最高点时速度gL v >时,则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动故对小球有, L mv mg F 2=+③同理,当小球通过最高点时速度gL v <时,则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用,故对小球有, L mv F mg 2=-。