曲线和方程 说课教案
- 格式:doc
- 大小:125.13 KB
- 文档页数:5
高中数学《曲线和方程》说课稿一、教学目标本节课的教学目标是使学生掌握曲线与方程之间的关系,并通过解决实际问题,培养学生使用曲线和方程进行模型建立和解决实际问题的能力。
二、教学重点•曲线与方程之间的关系•如何将实际问题转化为数学方程三、教学内容与教学步骤1. 教学内容本节课主要围绕以下内容展开:•曲线与方程的基本概念及表示方法•不同曲线类型与其数学方程的关系•如何通过实际问题引入曲线与方程的概念•如何将实际问题转化为数学方程的求解过程2. 教学步骤•步骤一:导入 (5分钟)为了引起学生的兴趣,我将通过一个问题引入本节课的内容。
例如:某地高楼上有一名射手,他站在高楼内部的窗户边,窗户是矩形的。
他能够扫射到的范围是什么形状的?请同学们思考并表达自己的观点。
•步骤二:知识讲解 (20分钟)在学生思考之后,我将展示射手能够扫射到的范围是一个半圆形。
然后,我将引入曲线与方程的概念,讲解不同曲线类型与其数学方程的关系。
例如,直线的数学方程为y=kx+b,二次函数的数学方程为y=ax2+bx+c等等。
在讲解的过程中,我会通过实际例子和图示来帮助学生更好地理解概念和关系。
•步骤三:示例讲解 (30分钟)在讲解完基本概念和关系后,我将选择几个实际问题,与学生一起讨论如何将问题转化为数学方程,并解决问题。
例如,一辆汽车以30km/h的速度行驶,经过多长时间后能够追上前方行驶的一辆以20km/h的速度行驶的汽车?在解题过程中,我将引导学生分析问题,确定所需未知数,并建立数学方程。
然后,我将解答并解释解题过程。
•步骤四:拓展与总结 (10分钟)在课程结束前,我将引导学生思考曲线与方程的应用领域,并总结本节课的重点内容。
同时,我会留出一些时间,让学生提出问题或分享自己的见解。
四、教学方法与教学手段本节课将采用多种教学方法与教学手段,包括:•导入式提问:通过问题引入课堂内容,激发学生思考。
•教师讲解:向学生介绍曲线与方程的基本概念,以及不同曲线类型与其数学方程的关系。
曲线与方程教案
教案标题:曲线与方程
教案目标:
1. 了解曲线与方程的基本概念和关系;
2. 掌握曲线与方程之间的相互转化方法;
3. 学会利用曲线图解和方程表示解决实际问题。
教案内容:
一、引入与导入
1. 准备一些简单的曲线图形,如直线、抛物线等,并与学生讨论曲线的特征和方程的关系。
2. 引导学生思考曲线与方程之间的关系,并提出探究的问题:“何为曲线的方程?如何通过给定的曲线图形确定方程?”
二、学习活动
1. 理论学习:
a. 讲解曲线与方程的定义和基本概念。
b. 介绍常见曲线的特征和对应方程的形式。
c. 解释如何通过给定的曲线图形确定方程,并举例进行说明。
2. 实例演练:
a. 给出一些曲线图形,要求学生写出对应的方程,并互相交流、比较答案。
b. 给出一些方程,要求学生画出对应的曲线图形,并互相交流、比较结果。
3. 拓展应用:
a. 提供一些实际问题,要求学生通过曲线图形解决问题,并
用方程表示结果。
b. 小组合作,设计一个实际问题,并用曲线和方程解决问题,然后分享给全班。
三、巩固与拓展
1. 布置相关作业,要求学生进一步巩固并展开所学内容。
2. 提供更多的曲线与方程的相关资料供学生自主学习和拓展。
3. 搜集一些有趣的曲线图形和对应的方程,与学生分享。
教案总结:
通过本节课的学习,学生理解了曲线与方程之间的关系,掌握了确定曲线方程和绘制曲线图形的方法,并能够运用所学知识解决实际问题。
同时,通过拓展应用和自主学习,学生对曲线与方程的理解和应用也得到了拓展和巩固。
课题:曲线和方程(1:教学目标1知识与技能目标(1 了解曲线上的点与方程的解之间的一一对应关系;(2初步领会曲线的方程” 与方程的曲线”的概念;(3学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化形”与数”一致并相互转化的思想方法。
2、教学重点曲线的方程”与方程的曲线”的概念。
3、教学难点曲线的方程”与方程的曲线”的概念的理解:教学过程例1:画出方程0=-y x表示的直线y(1 (2方程(数量类比方程2x y =与如图所示的抛物线。
这条抛物线是否与这个二元方程2x y =也能建立这种对应关系呢?推广:那么对任意的曲线和二元方程是否都能建立这种等价关系呢?这就是今天这节课的内容:曲线和方程。
(板书课题现在请同学们思考这样的问题:方程0(=F 的解与曲线C 上的点的坐标具备怎样的关系,就能用方程0 , (= yF 表示曲线C ,同时曲线C 也表示着方程0(=F , 为什么要具备这些条件?例2:用下列方程表示如图所示的曲线 C ,对吗?为什么?(1 0-y(2 02=-y(3 0-yx(学生思考,回答(1 (2 (3这样我们可以对“曲线的方程”、“方程的曲线”下这样的定义:在直角坐标系中,如果某曲线 C 上的点与一个二元方程0(=f 的实数解建立了如下关系:(1 曲线上的点的坐标都是方程的解;(2 以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
2(1(<====>F例3:下列各题中,图所示的曲线C的方程为所列方程,对吗?如果不对,是不符合关系(1还是关系(2?曲线C为ABC ?的中线AO曲线C是到坐标轴距离相等的点组成的直线方程0=x 方程0=-y x曲线C是过点(4, 1的反比例函数图象方程xy 4=例4:解答下列问题, 并说出各依据了曲线的方程和方程的曲线定义中的哪一个关系? (1 点2, 52(, 4, 3(--B A 是否在方程为2522=+y x 的圆上? (2 已知方程为2522=+y x 的圆过点, 7(m C ,求m 的值。
《曲线与方程》说课稿曲线与方程是人教版选修2—1第二章第一节“曲线和方程”的第一课时,下面我从以下五个方面来汇报对教材的钻研情况和本节课的教学。
一、教材分析“曲线和方程”是在必修介绍了“直线的方程”和“圆的方程”之后,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。
学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。
如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!根据以上分析,确立教学重点是:理解曲线的方程和方程的曲线的概念;难点是:对曲线与方程对应关系的理解。
由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。
由于学生已经具备了用方程表示直线、圆等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。
为了强化其认识,每一个问题都引发学生用集合的知识加以阐述,并决定在一开始学习曲线与方程的概念时用集合相等的概念来理解曲线和方程的关系,并以此为工具来分析问题、实例,这将有助于学生的理解,有助于学生通其法,知其理。
二、教学目标分析根据教材的要求以及本节课在教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。
曲线与方程”教学设计说课稿2020-12-17曲线与方程”教学设计说课稿一、教学内容与内容解析1.内容:“曲线与方程”是《普通高中数学课程标准》规定的教学内容:理科选修2-1的2.1.1的内容,主要包括(1)曲线的方程与方程的曲线概念;(2)求曲线的方程的一般方法(步骤);(3)坐标法的基本思想与研究的基本问题.2.内容解析:在平面直角坐标系建立以后,点坐标(有序实数对);平面曲线(点的集合或轨迹)二元方程.因此, 曲线的方程是几何曲线的一种代数表示,方程的曲线则是曲线的方程的一种几何表示。
曲线和方程的这种相互表示,揭示了几何中的“形”与代数中的“数”的统一结合。
曲线与方程的相互转化,丰富了研究几何问题数学方法,产生一门新数学学科---解析几何,其方法论的意义影响深远,更便于人们在数字化时代,用计算机工具研究处理几何问题。
研究曲线与方程的目的是把曲线的几何特征转化为数量关系(方程),并通过代数运算处理已得到的数量关系,进而得出曲线的几何性质以及研究他们之间的相互关系,并达到利用曲线为人们服务的目的.因此,通过这一部分内容学习,可以加深学生对数学中的代数方法的.认识,也能够让学生更好地体会数学的本质.“曲线和方程”是解析几何中最基本(奠基)内容,是学生体会并理解圆锥曲线与其方程的基础。
不但为学习椭圆、双曲线、抛物线内容做准备,而且为学习研究其他曲线提供了理论和方法的准备.因此,教学时不仅要让学生学习如何求曲线的方程,而且要通过这一内容培养学生的坐标法思想,使学生明白求出曲线方程的真正意义在于利用曲线的方程去研究曲线.本节中的“曲线与方程”的概念,它是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的思想方法提升、深化,是研究问题“由特殊到一般,再到特殊”整个过程的一个阶段。
它刻画了曲线(几何图形)和方程(代数关系)间的一一对应关系,并根据曲线与方程的对应关系,介绍了求解曲线方程的一般方法,并要求学生能通过方程来处理一些简单的几何问题,从而达到培养学生“初步通过研究方程来研究曲线的几何性质”目的。
2.1曲线与方程教学设计教案第一篇:2.1曲线与方程教学设计教案教学准备1. 教学目标[1]了解曲线上的点与方程的解之间的一一对应关系 [2]初步领会“曲线的方程”与“方程的曲线”的涵义 [3]强化“形”与“数”一致并相互转化的思想2. 教学重点/难点教学重点:理解“曲线的方程”与“方程的曲线”的涵义教学难点:利用定义验证曲线是方程的曲线,方程式曲线的方程3. 教学用具多媒体设备4. 标签教学过程教学过程设计1 复习引入【师】在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线,请思考下面问题:【板演/PPT】思考1 直线y=x上任一点M到两坐标轴距离相等吗?思考2 到两坐标轴距离相等的点都在直线y=x上,对吗?思考3 到两坐标轴距离相等的点的轨迹方程是什么?为什么?【生】学生思考交流 2 新知介绍[1]结合具体实例,引入曲线方程和方程曲线概念【师】:引导学生发言总结【板演/PPT】答 y=±x. 理由:在直角坐标系中,到两坐标轴距离相等的点M的坐标(x0,y0)满足y0=x0或y0=-x0,即(x0,y0)是方程y=±x的解;反之,如果(x0,y0)是方程y=x或y=-x的解,那么以(x0,y0)为坐标的点到两坐标轴距离相等.【师】思考下面问题:思考4 曲线C上的点的坐标都是方程f(x,y)=0的解,能否说f(x,y)=0是曲线C的方程?思考5 判断下列命题是否正确.(1)以坐标原点为圆心,半径为r的圆的方程是y=(2)过点A(2,0)平行于y轴的直线l的方程为|x|=2. 【生】思考总结【板演/PPT】解 (1)不正确.设(x0,y0)是方程y=x02+y02=r2.两边开平方取算术平方根,得的解,则y0=,即;=r即点(x0,y0)到原点的距离等于r,点(x0,y0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r的圆上的一点如点在圆上,却不是y=的解,这就不满足曲线上的点的坐标都,是方程的解.所以,以原点为圆心,半径为r的圆的方程不是y=而应是y=±. (2)①、直线上的点的坐标都满足方程︱x︱=2②、满足方程︱x︱=2的点不一定在直线上结论:过A(2,0)平行于y轴的直线的方程不是︱x︱=2 【师】引导学生交流思想总结曲线方程的概念【板演/PPT】曲线的方程、方程的曲线一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.【师】引导学生深入理解定义,从充要条件来理解这个定义【板演/PPT】定义中的两个条件是判定一个方程是否为所定曲线的方程,一条曲线是否为所定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.【板演/PPT】从集合角度理解为:定义的实质是平面曲线的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以求曲线的方程 [2]概念应用【师】下面我们看屏幕上的例题【板演/PPT】例1:若命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题为真命题的是( ).A.不是曲线C上的点的坐标,一定不满足方程f(x,y)=0 B.坐标满足方程f(x,y)=0的点均在曲线C上 C.曲线C是方程f(x,y)=0的曲线D.不是方程f(x,y)=0的解,一定不是曲线C上的点. 【师】从定义入手,考虑充要条件【生】思考回答【板书/PPT】解析∵题设命题只说明“曲线C上的点的坐标都是方程f(x,y)=0的解”,并未指出“以方程f(x,y)=0的解为坐标的点都是曲线C上的点”,∴A,B,C都是假命题,如曲线C:平面直角坐标系一、三象限角平分线上的点,与方程f(x,y)=x2-y2=0,满足题设条件,但却不满足选项A,B,C的结论,根据逆否命题是原命题的等价命题知,D是正确的.【师】规律方法(1)判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上.从而建立方程的解与曲线上点的坐标的一一对应关系.(2)定义中的两个条件是判定一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的准则,缺一不可.因此,在证明f(x,y)=0为曲线C的方程时,必须证明两个条件同时成立.【师】为了深刻的理解方程与曲线,我们来看下列一个问题【板书/PPT】[例2] 下列方程表示如图所示的直线,对吗?为什么?不对请改正.【生】分析各个方程所表示的曲线是否与图中图象符合【板书/PPT】解:不对,应为y=x 【师】引导学生反思总结【板书/PPT】反思与感悟判断方程表示什么曲线,必要时要对方程适当变形,变形过程中一定要注意与原方程等价,否则变形后的方程表示的曲线就不是原方程的曲线.【板书/PPT】【师】引导学生思考【板书/PPT】方法点拨 (1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.解:带入验证知P点在此方程所表示的曲线上,Q点不在。
曲线与方程【教学目标】1.了解曲线上的点与方程的解之间的一一对应关系;初步领会“曲线的方程”与“方程的曲线”的概念;培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。
2.在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点;能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化的思想方法,提高思维品质,发展应用意识。
3.通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具;学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。
【教学重难点】1.重点:“曲线的方程”与“方程的曲线”的概念。
2.难点:怎样利用定义验证曲线是方程的曲线、方程是曲线的方程。
【教学方法】1.引导探索、发现规律。
通过学生观察坐标系中的曲线和方程之间的关系,来得出曲线和方程的概念,这能充分调动学生的主动性和积极性。
2.尝试指导法,以学生为主体,以训练为主线。
这样更能突出重点、解决难点,使学生的分析问题和解决问题的能力得到进一步的提高。
【教学过程】1.承上启下,提出课题师:我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程来表示,同时任何一个二元一次方程也表示着一条直线。
下面看一个具体的例子:例1:画出方程0-yx表示的直线=y(1) (2)借助多媒体让学生再一次从直观上深刻体会:必须同时满足(1)直线上的点的坐标都是方程的解和(2)以这个方程的解为坐标的点都是直线上的点,即方程的解的集合与直线上所有点的集合之间建立了一一对应关系。
类比方程2x y =与如图所示的抛物线。
这条抛物线是否与这个二元方程 2x y =也能建立这种对应关系呢? (按照例1的分析方式的得出答案是肯定的。
曲线与方程教案曲线与方程教案教学目标:1. 理解曲线和方程之间的关系;2. 能够根据给定的方程,画出相应的曲线;3. 掌握常见曲线的方程及其特点。
教学内容:1. 曲线的定义:曲线是指在平面上由一系列点连接而成的连续图形。
2. 方程的定义:方程是指数、代数、函数或者几何等方面的等式或不等式。
3. 曲线与方程的关系:方程可以表示曲线的几何特征,曲线是方程的图形解。
教学步骤:Step 1: 引入新知识执教教师可以使用简单的例子来引入曲线与方程之间的关系,比如以一元一次方程为例,通过给定方程y = 2x + 3,可以让学生画出与之对应的曲线并分析其几何特征。
Step 2: 曲线的方程与特征讲解常见曲线的方程及其特征:- 一次函数曲线:y = kx + b,斜率k决定曲线的斜率方向和变化趋势,截距b决定曲线的位置;- 二次函数曲线:y = ax² + bx + c,二次函数曲线的开口方向和大小由二次项的系数a决定;- 平方根函数曲线:y = √x,平方根函数曲线是一条从原点开始向右上方的开口曲线;- 绝对值函数曲线:y = |x|,绝对值函数曲线以y轴为对称轴,开口形状像字母V;- 正弦函数曲线:y = sinx,正弦函数曲线是一条周期性的波浪线。
Step 3: 案例演示与讲解以具体的曲线及其方程为例讲解如何绘制这些曲线,强调方程中的各个参数对曲线的影响,如斜率对曲线的倾斜程度,二次函数曲线的开口方向等。
Step 4: 练习与巩固开展练习活动,让学生根据给定的方程,画出相应的曲线,并分析其特征,如方程y = x² - 4x + 3对应的曲线的开口方向、顶点坐标等。
Step 5: 拓展应用引导学生思考如何利用方程来解决实际问题,如使用曲线方程来分析某种现象的趋势或者预测未来的发展方向。
Step 6: 总结与评价总结曲线与方程的关系,并评价本节课的学习情况。
可以通过提问或小测验的方式进行学生知识的巩固和检测。
数学《曲线与方程》教案【教学目标】1.了解和掌握一次函数和二次函数的图像、性质和应用。
2.掌握一次方程和二次方程的基本知识、解题方法和应用。
3.掌握实际问题应用中解方程的方法。
【教学重点】1.掌握一次函数和二次函数的图像、性质和应用。
2.掌握一次方程和二次方程的基本知识、解题方法和应用。
3.掌握实际问题应用中解方程的方法。
【教学难点】1.一次函数和二次函数的图像、性质和应用的综合应用。
2.实际问题应用中解方程的方法。
【教学过程】一、引入新课教师可引导学生通过问答、引入故事等方式,调动学生的学习兴趣,引入新的知识领域。
二、概念的讲解和探究1.一次函数(1)定义:函数y=kx+b(x∈R)称为一次函数,其中k,b均为常数,k为非零实数。
(2)一次函数的图像:一次函数图像是由一条直线组成,图像有倾斜的趋势,当斜率k>0时,图像从左向右上升,k<0时,图像从左向右下降。
截距b为函数图像在y轴上的截距。
(3)应用:一次函数常常代表一种线性关系,如速度、距离、重量、价格等。
2.二次函数(1)定义:函数y=ax^2+bx+c(x∈R)称为二次函数,其中a,b,c为常数,且a≠0。
(2)二次函数的图像:二次函数图像是一条开口朝上或朝下的抛物线,当a>0时,图像开口朝上;a<0时,图像开口朝下。
顶点坐标为(-b/2a,f(-b/2a))(f(x)=ax^2+bx+c)。
(3)应用:二次函数常常在抛物线问题中使用,如炮弹的运动、神经元的发放等等。
三、基本解法的演示1.一次方程的解法(1)基本初等变形法:对等式两边进行加、减、乘、除等运算,化简方程,将未知数分离出来。
(2)解题步骤:Step1:用合适的字母表示未知数。
Step2:列出等式。
Step3:对等式进行变形。
Step4:将未知数分离出来。
Step5:检验解。
2.二次方程的解法(1)配方法:当方程右侧项不为0时,可以采用配方法将方程化为平方差的形式,从而求得方程的解。
曲线和方程各位评委:大家好。
我叫xx,来自川师成都学院,今天我说课的题目是《曲线和方程》第一课时,我将通过教材分析、教学目标分析、教学重难点、教法与学法、课堂设计五方面来逐一加以分析和说明。
一、教材分析《曲线和方程》是人教版高中数学第二册(上册)第七章第六节的内容。
这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何的基本思想,对解析几何教学有着深远的影响。
从知识上说,曲线与方程的概念是对后面所学的求出曲线的方程的准确性来说是很关键的,它在下节课中起到基础性的作用,不仅是本节的重点概念,也是高中学生较难以理解的一个概念。
通过本节的学习,提高学生对概念的理解能力,也为以后进一步学习奠定了基础,对培养学生观察问题、分析问题、解决问题的能力有重要作用,是培养高二学生的观察分析能力和逻辑思维能力的重要训练内容。
二、教学目标◆知识目标:1、理解曲线上的点与方程的解之间的一一对应关系;2、初步领会“曲线的方程”与“方程的曲线”的概念;3、学会根据已有的资料找规律,进而分析、判断、归纳结论;4、强化“形”与“数”一致并相互转化的思想方法。
◆能力目标:1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;3、在构建曲线和方程概念的过程中,培养学生分析、判断、归纳的逻辑思维能力、知识迁移能力、合情推理能力,同时强化“形”与“数”结合并相互转化的思想方法。
◆情感目标:1、通过概念的引入,让学生感受从特殊到一般的认知规律;2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、教学重难点本节重点:“曲线的方程”与“方程的曲线”的概念本节难点:“曲线的方程”与“方程的曲线”的概念并利用定义验证曲线是方程的曲线,方程是曲线的方程重难点突破分析:“曲线的方程”与“方程的曲线”的概念是本节的重点,本节课是由几个特例上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延,也就是曲线上的点与方程的解之间的一一对应关系的理解透彻问题。
由于学生已经具备了用方程表示直线、圆、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,加强认识曲线和方程的对应关系,使学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的一个难点。
通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。
这种现象在高考中也屡见不鲜。
为了突破难点,本节课通过一个实例来展示,由于课标只作为了解,在本节课不要求学生必须掌握。
四、教法与学法教法:探究式教学是适应新课程体系的一种全新教学模式,因此在我的教学中,主要采用探究式教学方法。
从实例、到类比归纳、到推广的问题探究方式,它对激发学生学习兴趣,培养学习能力都十分有利。
启发引导学生得出概念,深化概念,并应用它所解决问题去讨论、去研究。
用举反例的方法来突破难点,引导学生对概念表述的严密性进行探索的探究教学法。
在师生互动中解决问题,为提高学生分析问题、解决问题的能力打下了基础。
同时结合多媒体辅助教学,节省了板书时间,增大了信息量,增强了直观形象性。
学法:问题探究和启发引导式相结合。
本节属于概念教学,可采用以语言传递信息、分析概念的讲授法。
引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流合作的能力,基于此,本节课从实例引入→类比→推广→得概念→概念挖掘深化→具体应用→作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。
五、教学过程(一)提出课题师:在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线。
让学生画出方程0x表示的直线-y=◆思考直线上所有点的集合与方程的解的集合之间的对应关系是怎样的?(出示幻灯片)1、直线上的点的坐标都是方程的解;2、以这个方程的解为坐标的点都在直线上。
即:直线上所有点的集合与方程的解的集合之间建立了一一对应关系。
我们就可以说方程x-y=0是表示直线l的方程,直线l是表示方程x-y=0的直线◆(引导学生思考)我们已经学过的还有一些曲线和方程,是否有类似的对应关系?(出示幻灯片,引导学生类比、推广并思考相关问题)类比:(引导和启发学生说出曲线上的点与方程的解之间是否也是一一对应关系,注意引导学生类似上面的表达方式。
)1、圆上的点的坐标都是方程的解;2、以这个方程的解为坐标的点都在圆上。
即:圆上所有点的集合与方程的解的集合之间建立了一一对应关系。
我们就可以说方程22)2x=--是表示此圆的方程,圆是表示方程a+(r)yb(22)2x=--的圆。
a+)((ryb类似的让学生表述出以下的对应关系:◆推广:任意的曲线和二元方程是否都能建立这种对应关系呢?也即:方程0(=)xf表y,)f的解与曲线C上的点的坐标具备怎样的关系就能用方程0(=,yx示曲线C,同时曲线C也表示着方程0yxf?(=,)设计目的:运用学生熟知的旧知识引入,再类比和推广,由特殊到一般地提出了课题,又为形成“曲线和方程”的概念提供了实际模型。
学生是学习的主体,所学的知识只有通过学生的再创造活动,才能纳入其认知结构中。
通过对以前所学的知识进行有意识的引导探究活动,得出所要学的知识,并且学会类似的表达,使学生感受发现知识过程和容易接受所要学的知识,同时也提高学生对数学知识的表达能力和观察能力。
(二)通过合情推理,概括形成定义引导学生根据前面分析曲线上的点与方程的解之间是否是一一对应关系,模仿前面的结论对“曲线的方程”和“方程的曲线”下这样的定义:一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程0xf的实数解建y(=,)立了如下的关系:⑴曲线上的点的坐标都是这个方程的解;⑵以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
(三)讨论归纳给出定义——运用反例揭示概念内涵我们在给曲线方程下定义时,语言表述概念不失概念的严谨性,表述是否正确呢?如果概念中的两点少一点,是否也满足曲线上的点坐标与方程的解之间的一一对应关系呢?设计目的:引导学生对得到的结论要给予更多的思考,帮助他们提高认识,更加深入探索是概念表述的实质内涵是什么。
这也是概念教学中学生理解概念的要点,突出本节课的教学重点,给学生较多的时间互相探究问题和讨论解决问题,让学生对概念的丰富内涵有更深的认识。
(出示幻灯片,引导学生探究和思考相关问题)◆请同学们探究下列两个图上曲线上的点与方程的解之间的对应问题:最后总结:对“曲线的方程”和“方程的曲线”下的定义两点关系的理解是:关系(1)说的是曲线上的点的坐标与这个方程的解都对应。
关系(2)说的是以这个方程的解为坐标的点都与曲线上的点对应。
两点合来才说明是曲线上的点与方程的解之间是一一对应关系,二者缺一不可。
设计目的:让学生通过探究以上来两个反例对“曲线上的点与方程的解之间是否满足一一对应关系”,从得出曲线上的点与方程的解之间不满足一一对应关系。
使学生在探究的过程中提高对概念的理解。
(四)通过练习应用和强化概念的理解(出示幻灯片,给学生足够时间练习)1.下列各题中,图所示的的曲线C 的方程为所列方程,对吗?如果不对,是不符合关系(1)还是关系(2)?2.解答下列问题,并说出各依据了“曲线的方程”和“方程的曲线”定义中的哪一个关系?⑴点A (3,-4)、B (52-,2)是否在方程2522=+y x 的圆上?⑵已知方程为2522=+y x 的圆过点C (7,m ),求m 的值。
设计目的:对曲线与方程的概念的准确理解是对今后求出准确的曲线方程有重要作用。
因此通过练习加强学生应用和强化概念的理解,同时也让学生主动参与课堂教学,通过师生互动得到答案,了解学生理解概念的情况用概念证明的例题讲解P35如图1:(1)直线上的点的坐标是否都满足方程x-y=0解? (2)以方程x-y=0解为点的坐标是都否直线上?曲线上的点的坐标与方程的解之间是否满足一一对应关系?图1 让学生探究得出结论是不符合的是关系(1) 如图2:(1)射线上的点的坐标是否都满足方程x-y=0解?(2)以方程x-y=0解为点的坐标是都否射线上?曲线上的点的坐标与方程的解之间是否满足一一对应关系?图2 让学生探究得出结论是不符合的是关系(2)2.1曲线与方程 1.曲线与方程的定义: 例1:证明:2.对关系(1)的理解对关系(2)的理解例1:证明与两条坐标轴的距离的积是常数)0(>k k 的轨迹方程是k xy ±=。
设计目的:这为下节课打下基础,证明对学生来说是一个难度较大的,也是个难点,课标不作为必须掌握的,本节课只是让学生初步了解,提高对概念的应用能力分析:引导学生思考从概念的两点出发去找证明思路:(1)证明轨迹上的点的坐标都是方程的解;(2)证明方程的解为坐标的点都在曲线上。
证明:(1)设),(00y x M 是轨迹上的任意一点,则M 与x 轴的距离是0y ,与y 轴的距离是0x ,k y x =⋅∴00 即),(00y x 是方程k xy ±=的解。
(2)设点1M 的坐标),(11y x 是方程k xy±=的解,则k y x ±=11,即k y x =⋅11 而1x ,1y 分别是点1M 与y 轴的距离和x 轴的距离,所以点1M 到这两坐标轴的距离的积是常数k ,点1M 是曲线上的点。
由(1)(2)可知,k xy ±=是与两条坐标轴的距离的积是常数)0(>k k 的轨迹方程。
(五)小结归纳本节课我们通过对实例的探究,理解了“曲线的方程”和“方程的曲线”的定义,探究定义时,要记住关系⑴、⑵两者缺一不可,其实质是曲线上的点的坐标与方程的解之间是一一对应关系。
它们都是“曲线的方程”和“方程的曲线”的必要条件,两者都满足了“曲线的方程”和“方程的曲线”才具备充分性。
曲线和方程之间一一对应关系的确立,把曲线与方程统一了起来,在此基础上,我们就可以更多地用代数的方法研究几何问题。