中外数学史第3章
- 格式:ppt
- 大小:157.50 KB
- 文档页数:22
浅谈《中外数学史概论》冷月无声摘要:这本书《中外数学史概论》是由傅海伦编著的,北京科学出版社出版,书号是ISBN 978—7—03—018477—1.这本书的主要内容分为两部分:前半部分是中国数学史概论,后半部分是世界数学史概论。
在中国数学史方面,作者将中国数学史分为以下几个阶段来讲解,分别是:远古至春秋的萌芽、战国至秦汉框架的确立、三国至唐初理论的奠基、唐中叶至宋元的高潮、明中至清末中西数学的河流以及中国近代数学的奠基与发展,分别讲了这些时期的数学家和他们的主要成就。
世界数学史部分,作者主要是分别对古希腊、古埃及、巴比伦、印度等国家的历史概述、数学名家和数学主要成就来进行分析与讲述的。
正文:刚开始看这本书的时候,真的觉得很无聊,看不下去,很多古文,虽然作者有讲解,但看起来确实很乏味。
但是我还是耐着性子坚持读,当我读到12页关于二进制的思想的时候,我震惊了。
我国古代的“八卦”竟然与二进制有联系,这是德国伟大的数学家莱布尼兹发现的,他将八卦中的阴爻与阳爻分别用1和0代替,八卦就转换成了二进制的数码:000(坤)001(震)010(坎)011(兑)100(艮)101(离)110(巽)111(乾)。
虽然我不懂八卦,但是看到这里我真的相当佩服古人的聪明才智。
而且八卦不仅与二进制有关,尽然与现在我们学习的组合数学,还有幻方都有关系。
以前我一直觉得八卦就是伪科学的,就是宗教思想,看了这本书我才知道这其实是古人的科学的发现,是他们经过苦心研究得到的成果。
正如莱布尼兹所说的“八卦是流传于宇宙的科学中最古老的纪念物”,这项发明“对于中国人来说实在是是值得庆幸的事情”。
另一个让意外惊的是我国古代无理数的发现,我们都知道世界史中说无理数是毕达哥拉斯学派发现的。
他们刚发现的时候是惊慌失措,怕接受这样的现实。
而我国古代的数学家在开方运算中接触到了无理数,他们当时的态度,《九章算术》里是这样描述的:“若开方不尽者,为不可开”。
(名师选题)七年级数学上册第三章一元一次方程全部重要知识点单选题1、甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( )A.5小时B.1小时C.6小时D.2.4小时答案:C分析:设甲从出发到刚好追上乙所需要时间x小时,可得7x-5x=12,即可解得答案.解:设甲从出发到刚好追上乙所需要时间x小时,根据题意得:7x-5x=12,解得x=6,答:甲从出发到刚好追上乙所需要时间是6小时.故选:C.小提示:本题考查一元一次方程的应用,解题的关键是读懂题意,掌握追击问题的等量关系列方程.2、对于等式:|x−1|+2=3,下列说法正确的是()A.不是方程B.是方程,其解只有2C.是方程,其解只有0D.是方程,其解有0和2答案:D分析:根据方程的定义及方程解的定义可判断选项的正确性.方程就是含有未知数的等式,方程的解是能使方程左右两边相等的未知数的值.解:|x-1|+2=3符合方程的定义,是方程,(1)当x≥1时,x-1+2=3,解得x=2;(2)当x<1时,1-x+2=3,解得x=0.故选:D.小提示:本题主要考查了方程的定义及方程解的定义,关键在于讨论x的取值情况,从而通过解方程确定方程的解.3、已知y=2x+513−3x−217−32x+2.当x=1.5时,y>0;当x=1.8时,y<0.则方程2x+513−3x−217−32x+2=0的解可能是()A.1.45B.1.64C.1.92D.2.05答案:B分析:由题意估算得出方程的解的取值范围在1.5与1.8之间,据此即可求解.解:对于y=2x+513−3x−217−32x+2来说,∵当x=1.5时,y=2x+513−3x−217−32x+2>0;当x=1.8时,y=2x+513−3x−217−32x+2<0;∴方程2x+513−3x−217−32x+2=0的解的取值范围在1.5与1.8之间,观察四个选项,1.64在此范围之内,故选:B.小提示:本题考查了一元一次方程的解,关键是根据题意得出方程2x+513−3x−217−32x+2=0的解的取值范围在1.5与1.8之间.4、小明在某月的日历上圈出了三个数a、b、c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.答案:D分析:日历中的每个数都是整数且上下相邻是7,左右相邻差1,根据题意列方程可解.A:设最小的数是x,则x +(x +1)+(x +2)=39,解得:x=12,故本选项不符合题意;B:设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;C:设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D:设最小的数是x,则x+(x+8)+(x+14)=39,解得x=17,故本选项符合题意.3故选:D.小提示:本题考查了一元一次方程在日历问题中的应用,明确日历中上下行及左右相邻数之间的关系是解题的关键.5、宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数,解题先要“立天元为某某”,相当于“设x为某某”.“天元术”是中国数学史上的一项杰出创造,它指的是我们所学的()A.绝对值B.有理数C.代数式D.方程答案:D分析:根据数学发展常识作答.解:中国古代列方程的方法被称为天元术,故选:D.小提示:本题主要考查了方程,代数式,数学常识,方程是刻画现实世界的一个有效的数学模型的数学模型.6、关于x的方程3(★−9)=5x−1,★处被盖住了一个数字,已知方程的解是x=5,那么*处的数字是()A.-1B.-17C.15D.17答案:D分析:把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.解:将x=5代入方程,得:3(★-9)=25-1,解得:★=17,即★处的数字是17,故选:D.小提示:此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7、如图,表中给出的是某月的日历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现此月这7个数的和可能的是()A.106B.98C.84D.78答案:C分析:设7个数中最小的数为x,则另外6个数分别为x+2,x+7,x+9,x+14,x+15,x+16,进而可得出7个数之和为7x+63,然后再验证每一个选项即可.解:设7个数中最小的数为x,则另外6个数分别为x+2,x+7,x+9,x+14,x+15,x+16,由题意得x+x+2+x+7+x+9+x+14+x+15+x+16=7x+63,当7x+63=106时,解得x=437,故选项A不合题意;当7x+63=98时,解得x=5,故选项B不符合题意;当7x+63=84时,解得x=3,故选项C符合题意;当7x+63=78时,解得x=157,故选项D不合题意;故选:C小提示:本题考查了列代数式及一元一次方程的应用,用含最小数的代数式表示出7个数之和是解题的关键.8、下列方程中:①x﹣2=2x ;②x=6;③2−y4=y−15;④x2﹣4x=3;⑤0.3x=1;⑥x+2y=0,其中一元一次方程的个数是()A.3B.4C.5D.6答案:A分析:根据一元一次方程的定义:一元一次方程只含有1个未知数,并且未知数的次数是1的整式方程,进行逐一判断即可.解:①x﹣2=2x不是整式方程,不是一元一次方程,故不符合题意:②x=6是一元一次方程,故符合题意:③2−y4=y−15和⑤0.3x=1符合一元一次方程的定义,故符合题意;④x2﹣4x=3未知数的最高次不是1,不是一元一次方程,故不符合题意;⑥x+2y=0含有两个未知数,不是一元一次方程,故不符合题意;故选:A.小提示:本题主要考查一元一次方程的定义,需注意定义里的每一个条件都要满足,理解掌握定义是解答关键.9、为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.17答案:B分析:设小红答对的个数为x个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.解:设小红答对的个数为x个,由题意得5x−(20−x)=70,解得x=15,故选B.小提示:本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.10、下列解方程去分母正确的是( )A.由x3−1=1−x2,得2x﹣1=3﹣3xB.由x−22−x4=−1,得2x﹣2﹣x=﹣4C.由y3−1=y5,得2y-15=3yD.由y+12=y3+1,得3(y+1)=2y+6答案:D分析:根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.A.由x3−1=1−x2,得:2x﹣6=3﹣3x,此选项错误;B.由x−22−x4=−1,得:2x﹣4﹣x=﹣4,此选项错误;C.由y3−1=y5,得:5y﹣15=3y,此选项错误;D.由y+12=y3+1,得:3(y+1)=2y+6,此选项正确.故选D.小提示:本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.填空题11、关于x的方程5m+3x=1+x的解比方程2x=6的解小2,则m=_____.答案:−15##-0.2分析:先求出方程2x=6的解为x=3,可得方程5m+3x=1+x的解为x=1,把x=1代入5m+3x=1+x可得关于m的一元一次方程,解方程即可得出m的值.解方程2x=6,得x=3,∵关于x的方程5m+3x=1+x的解比方程2x=6的解小2,∴方程5m+3x=1+x的解为x=1,∴5m+3=1+1,解得:m=−15.所以答案是:−15.小提示:本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.12、篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.答案:9分析:设该队胜x场,则负14-x场,然后根据题意列一元一次方程解答即可.解:设该队胜x场由题意得:2x+(14-x)=23,解得x=9.故答案为9.小提示:本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.13、若(m−1)x+1=0是关于x的一元一次方程,则m的值可以是______(写出一个即可)答案:2(答案不唯一)分析:只含有一个未知数,并且未知数的次数是一次的整式方程叫一元一次方程,利用一元一次方程的定义得出m−1≠0,即可得出答案.解:∵(m−1)x+1=0是关于x的一元一次方程,∴m−1≠0,解得m≠1,∴m的值可以是2.所以答案是:2(答案不唯一).小提示:此题主要考查了一元一次方程的定义,正确掌握一元一次方程定义是解题关键.14、已知方程5y+x=2,用含y的代数式表式x的形式为______.答案:x=2−5y分析:根据等式基本性质,等式两边同时减去5y,即可得出答案.解:∵5y+x=2,∴x=2−5y.所以答案是:x=2−5y.小提示:本题主要考查了等式的基本性质,解题的关键是熟练掌握等式基本性质,等式两边同时加上或减去一个整式,等式仍然成立.15、“某数与6的和的一半等于12”,设某数为x,则可列方程________.=12答案:x+62分析:根据题目中的等量关系列出方程即可求解.解:∵某数与6的和的一半等于12,∴可列方程为x+6=12.2=12.所以答案是:x+62小提示:此题考查了列一元一次方程,解题的关键是找到题目中的等量关系并表示出来.解答题16、小韩和同学们在一家快餐店吃饭,下表为快餐店的菜单:x杯饮料和5份小菜.(1)他们共点了______份B餐;(用含x的式子表示)(2)若他们套餐共买6杯饮料,求实际花费多少元;(3)若他们点餐优惠后一共花费了256元,请通过计算分析他们点的套餐是如何搭配的.答案:(1)(x−5)(2)264元(3)A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份,见解析分析:(1)由三种套餐中均包含盖饭且只有C套餐中含小菜,即可得出他们点了(x−5)份B套餐;(2)依题意知:C套餐5份,B套餐1份,A套餐5份,据此即可解答;(3)依题意知:C套餐5份,B套餐(x−5)份,A套餐(11−x)份,再分两种情况,列方程即可分别求得.(1)解:因为三种套餐中均包含盖饭且只有C套餐中含小菜,有5份小菜,所以共点了5份C套餐,因为只有B和C套餐中有饮料,一共点了x杯饮料,C套餐有5份,所以他们点了(x−5)份B套餐.所以答案是:(x−5);(2)解:依题意:C套餐5份,B套餐1份,A套餐5份,所以5×20+1×28+5×32=288(元),因为满150元,减24元,所以实际花费为:288−24=264(元);(3)解:因为只有C套餐含小菜,所以依题意C套餐点了5份;因为有x份饮料,所以B套餐共(x−5)份,因为共11份盖饭,所以A套餐(11−x)份.当满150优惠时:32×5+28(x−5)+20(11−x)−24=256,解得:x=5,故A套餐6份,C套餐5份;当满300优惠时:32×5+28(x−5)+20(11−x)−48=256,解得:x=8,故A套餐3份,B套餐3份,C套餐5份.综上,他们点的套餐是A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份.小提示:本题考查了应用类问题,列代数式,一元一次方程的实际应用,根据各数量之间的关系,正确列出一共的花费及方程是解题的关键.17、【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=−3;当x+5<0时,原方程可化为:x+5=−2,解得x=−7.所以原方程的解是x=−3或x=−7.【我会解】解方程:|3x−2|−5=0,x=-1答案:x=73分析:根据题目中的方法,分两种情况讨论:当3x-2≥0时;当3x-2<0时;化为一元一次方程,然后求解即可得.解:|3x-2|-5=0,原方程可化为:|3x-2|=5当3x-2≥0时,原方程可化为:3x-2=5,移项,得3x=7;解得x=73当3x-2<0时,原方程可化为:3x-2=-5,移项,得3x=-3,解得x=-1,x=-1.所以原方程的解是x=73小提示:题目主要考查绝对值化简及解一元一次方程,理解题目中的求解方法,准确计算是解题关键.18、如图1,在长方形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间;(1)当t为何值时,线段AQ的长度等于线段AP的长度?(2)当t为何值时,AQ与AP的长度之和是长方形周长的14(3)如图2,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半?答案:(1)当t=2时,线段AQ的长度等于线段AP的长度(2)当t=3时,AQ与AP的长度之和是长方形周长的14(3)当t=15时,线段AQ的长等于线段CP的长的一半2分析:(1)由长方形的特征可知AD=BC=6cm,由题意易得DQ=t cm,AP=2t cm,则有AQ=(6-t)cm,进而问题可求解;(2)由(1)可知6-t+2t=9,然后问题可求解;(3)由题意易得AQ=(t-6)cm,CP=(18-2t)cm,进而问题可求解.(1)解:∵AB=12cm,BC=6cm,∴在长方形ABCD中,AD=BC=6cm,由题意得:DQ=t cm,AP=2t cm,则有AQ=(6-t)cm,∴6−t=2t,解得:t=2,∴当t=2时,线段AQ的长度等于线段AP的长度;(2)解:由(1)可得:6−t+2t=1×2×(12+6),4解得:t=3,∴当t=3时,AQ与AP的长度之和是长方形周长的1;4(3)解:由题意得:AQ=(t-6)cm,CP=(18-2t)cm,∴t−6=1(18−2t),2;解得:t=152∴当t=15时,线段AQ的长等于线段CP的长的一半.2小提示:本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.。
《数学史概论》教学大纲课程编号:024ZX002课程名称(中文):数学史概论课程名称(英文):学分:3 总学时:54 实验学时:适应专业:数学与应用数学(选修)先修课程:数学分析,高等代数,概率统计一、课程的性质和任务数学史是师范本科数学专业必修的重要基础课程之一。
任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。
数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。
这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。
该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。
通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。
基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。
七年级上册第三章一元一次方程”简介方程是《全日制义务教育数学课程标准(修订稿)》中“数与代数”领域的重要内容之一,一元一次方程是最简单、最基本的方程.继第一章“有理数”和第二章“整式及其加减”之后,本章对一元一次方程进行研究,主要内容包括一元一次方程的有关概念、解法和应用,化归思想和模型思想隐含于知识之中. 通过学习本章,学生的代数运算能力和数学建模能力将得到进一步发展. 本章共安排四个小节和两个选学内容,教学时间大约需要19课时,具体安排如下(仅供参考):3.1 从算式到方程约4课时3.2 一元一次方程的讨论(一)———合并同类项与移项约4课时3.3 一元一次方程的讨论(二)———去括号与去分母约4课时3.4 实际问题和一元一次方程约5课时数学活动小结约2课时一、教科书内容和课程学习目标(一)本章知识结构框图1.利用一元一次方程解决问题的基本过程设未知数,(二)教科书内容人们对方程的研究有悠久的历史,方程是重要的数学基本概念,它随着实践需要而产生,并且具有极其广泛的应用.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展.从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析与解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的等量关系建立方程模型是全章的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本章前三节中占重要地位.解方程中蕴涵的“化归思想”和列方程中蕴涵的“数学建模思想”,是本章中包含的主要数学思想.讨论一元一次方程的解法时,会直接应用有理数的运算,还会应用“合并同类项”“去括号”等整式加减运算的法则,即第一、二章的内容是关于一元一次方程解法的基础知识.全章共包括四节:3.1 从算式到方程3.1.1 一元一次方程在小学阶段,用算术方法解应用题是数学课中的重要内容,此外对于方程也有过对一些最简单问题的讨论.本小节先通过一个具体的行程问题,引导学生尝试如何用算术方法解决它,然后再逐步引导学生通过列出含未知数的式子表示有关的量,并进一步依据问题中的相等关系列出含未知数的等式——方程.这样安排目的不仅在于突出方程的根本特征,引出方程的定义,而且要使学生认识到方程是比算术式子更有力的数学工具,字母(未知数)可以列入方程并参与运算,从而给解决问题带来更大的便利,从算术方法到代数方法是数学的进步.算式表示的是用算术方法进行计算的程序,算式中只能含有已知数而不能含有未知数,这是列算式使用问题中的数量关系时必须遵守的规则.列方程依据问题中的数量关系,特别是相等关系,它打破了列算式时只能使用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数在被解出之前以字母形式进入表示相等关系的式子,是代数方法对于算术方法的新改革.正因有了如此的新突破,所以一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性.本小节中引出了方程、一元一次方程、方程的解以及解方程等基本概念,并且对于“分析实际问题中的数量关系,设未知数,利用相等列出方程”的过程进行了归纳.这对后续内容的展开具有重要的基础作用.3.1.2 等式的性质方程是含未知数的等式,为适合初中学生学习,降低学习难度,本章不涉及关于方程的同解理论,而以相对说来比较容易理解的等式的性质作为解方程的主要根据.本小节通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法.这将为后面的3.2节和3.3节进一步讨论较复杂的一元一次方程的解法准备理论依据.本节最后安排的“阅读与思考:‘方程’史话”,简要地回顾了中外古人研究方程过程中的几个重要事件,通俗地介绍了与方程相关的数学史料,这有助于传播数学文化、扩大知识面和增加学习兴趣.3.2 解一元一次方程(一)———合并同类项与移项本节的重点在于讨论解方程中的“合并同类项”和“移项”两个基本做法,这样就已经可解=+ax+cxbd类型的一元一次方程.本节中对于“合并同类项”和“移项”的讨论,分别以问题1和问题2为出发点.以较为简单的实际问题作讨论方程解法的背景,一方面可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面可使根据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而达到由简单到复杂地逐步提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780~850年间的阿拉伯数学家阿尔-花拉子米所著的《对消与还原》一书,提问“对消”与“还原”是什么意思,以此作为后面内容的引子.这也具有介绍数学史,传播数学文化的作用.本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用为巩固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是巩固对相应解法的理解和掌握,二是逐步引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的基本过程中不可或缺的两个环节.本节最后安排的“实验与探究:无限循环小数化分数”,是对一个纯数学问题的讨论.它展示了研究数的问题时方程的应用,这有助于加强知识之间的联系和增加学习兴趣,也有益于以后进一步研究实数.3.3 解一元一次方程(二)———去括号与去分母本节的重点在于讨论解方程中的“去括号”和“去分母”两个基本做法,至此就可以解各种类型的一元一次方程,并归纳出一元一次方程解法的一般步骤.本节中对于“去括号”和“去分母”的讨论,分别以问题1和问题2为出发点,即从一道“用电问题”,引出解方程中的“去括号”问题;又从古代埃及的纸莎草文书中的一道题,引出带有分母的一元一次方程,进而讨论用去分母的方法解这类方程.以较为简单的实际问题作讨论方程解法的背景,这延续了3.2节的做法,其目的如前面所述.本节通过古埃及数学问题为讨论“去分母”的引子,反映出人们对数学研究有悠久的历史,数学文化源远流长,这也可以增加相关内容的趣味性.同3.2节的结构一样,本节在问题1和问题2之后,各安排了两道例题,其一是单纯解方程,其二是简单的实际问题,它们对理解和掌握“去括号”和“去括号”解方程,对理解和掌握根据实际问题中的相等关系列方程,有重要的示范作用.本节归纳了解一元一次方程的一般步骤,至此这类方程的一般解法已得到完整的讨论.3.4 实际问题与一元一次方程本节的第一部分,在此前已经讨论过由实际问题列出一元一次方程以及解一元一次方程的一般步骤的基础上,又安排了例1(“成龙配套”问题)和例2(工程问题),并在其后以框图形式归纳了用一元一次方程解决实际问题的基本过程,这是一个重要的小结.本节的第二部分,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题.要探究的三个问题(“销售中的盈亏”“球赛积分表问题”“电话计费问题”)要比前几节的问题复杂些,问题情境与实际情况更接近,呈现形式也有别于普通数学习题.本节的重点是建立实际问题的方程模型.通过探究活动,可以进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确地列出方程是主要的难点.突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.(三)本章学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.2.掌握等式的性质,能利用它们探究一元一次方程的解法,知道它们是解方程的依据.3.明确解方程的基本目标(使方程逐步转化为x=a的形式),在此目标引导下研究方程的解法;熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.4.能够找出实际问题中的已知数和未知数,会从数学运算角度分析它们之间的关系;会根据问题所求及题中条件设未知数,会列出方程表示问题中的相等关系,并利用方程求未知数,会结合题意进行检验.5.通过探究用一元一次方程解决实际问题,进一步体会利用一元一次方程解决问题的基本过程(见上图)和建立数学模型的思想,在解决问题的过程中感受数学的应用价值,提高分析问题、解决问题的能力.二、编写时考虑的几个问题1.突出列方程,结合解决实际问题讨论解方程列方程是本章的重点之一,也是难点.为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线.对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的一个特点.教科书先结合两个实际问题的求解过程分别讨论了“合并同类项”和“移项”,并进一步通过一些例题对这两种解方程的变形手段进行综合练习和强化.此后教科书又在对另两个实际问题的讨论中引出解方程中的“去括号”和“去分母”,并进一步通过一些例题和练习题帮助学生掌握它们.在此基础上,教科书归纳总结出解一元一次方程的目标和一般步骤,引导学生提高对一元一次方程解法的认识.我们认为这样处理解方程的教学符合人们对方程的认识过程,体现了方程的各种解法源于实际问题的需要,并且可以加强这章内容与实际的联系,有助于解决部分学生总感觉列方程难、学习列方程的时间过短等问题.2. 通过加强探究性,培养分析解决问题的能力、创新精神和实践意识本章的中心任务是,使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.由于实际问题的类型多样,在某些问题中数量关系不十分明显,使得建立方程模型表示问题中的相等关系成为教学中的难点.为切实提高利用方程解决实际问题的能力,本章在内容选择上注意加强探究性.例如,第3.4节特别安排了“实际问题和一元一次方程”的内容,选择了三个具有一定综合性的问题(“探究1 销售中的盈亏”“探究2 球赛积分表问题”“探究3 电话计费问题”),设置了若干探究点,引导学生利用方程为工具进行具有一定深度的思考,使全章所强调的以方程为工具把实际问题模型化的思想提到新的高度.这些内容包括:利用方程比较估算与精确计算(探究1),利用方程进行推理、判断、检验(探究2中已渗透了反证法的思想),利用方程寻找关键数值,对不同方案进行定量化对比与选择(探究3),安排这些探究问题的目的在于:一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上等到提高.3. 重视数学思想方法和数学文化的渗透本章不仅重视数学与实际的联系、列方程和解方程的方法,而且重视数学知识中蕴涵的建模和化归等数学思想方法的渗透.,本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想;另一个是解方程的过程中蕴涵的化归思想.虽然考虑到学生的理解能力等原因,教科书没有过多出现“数学模型”一词,但是本章以框图形式对“利用一元一次方程解决问题的基本过程”进行了归纳,意在渗透建模思想.为体现化归思想在解方程中具有指导作用,本章中讨论一元一次方程的各个步骤时,都注意说明解方程的目的即最终使方程变形为x=a(已知数)的形式,各种步骤都是为此而实施的,即在保持方程的左右两边的相等关系的前提之下,逐步使方程变形,从而使“未知”逐步转化为“已知”.本套教科书的特色之一是,使教科书成为反映科学进步、介绍先进文化的镜子.重视数学的科学价值,同时关注其文化内涵.通过教科书这面镜子的反射,结合教学内容生动活泼地介绍古今数学的发展,深入浅出地反映数学的作用(工具作用和人文教育作用),使学生逐步地认识数学的科学价值和人文价值,提高科学文化素养.本章对于数学文化予以很大关注,从数字到字母,从算式到方程,从算术到代数……这些数学史上的重大进步以及有关方程的名著《还原与对消》、埃及纸莎草文书中的问题等在教科书中都有所反映.编者希望学生通过学习本章不仅在数学知识和能力方面得到提高,而且能够感受到数学文化的熏陶.三、对教学的几个建议1. 关注在前面学段的基础上发展,做好从算术到代数的过渡本章第3.1节从一个实际问题(行程问题)开始讨论,在引出方程后提出“从算式到方程是数学的进步”.算式与方程表现了算术与代数解决问题的两种不同方法.用算术方法解实际问题是小学阶段中学生已经学习过的内容,它对于提高分析问题中数量关系的能力具有打基础的作用.算式表示一个计算过程,用算术方法解实际问题时,算式受到“其中只含已知数而不能有未知数”的限制;而代数中设未知数或列方程时首先需要用式子表示问题中有关的量,这些式子实际上也是算式,只是其中可能含有字母(未知数).方程是根据问题中的相等关系列出的等式,其中既含有已知数,又含有未知数,这是代数方程与算术算式的区别之一.由于方程中可以用未知数与已知数一起表示相关的量,并且未知数可以与其他数一样地参与运算,所以方程的应用更为方便.这正是用字母表示数带来的好处.方程的出现使代数方法超越了古老的算术方法.从课程标准看,在前面学段中已经有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,即对于方程的认识已经历了入门阶段,具备了一定的基础,这些基本的、朴素的认识为进一步学习方程奠定了基础.本章的内容是在前面的学习基础上的进一步发展,即对一元一次方程作更系统、更深入的讨论,所涉及的实际问题要比以前学习的问题复杂些,更强调模型化思想的渗透;对方程解法的讨论要更系统、更注重算理,更强调创设未知向已知转化的条件以及解法中程序化的思想.了解以上的联系与区别,有助于在本章教学中注意到应在哪些地方使学生得到新的提高.2. 关注方程与实际问题的联系,体现数学建模思想我们生活在一个丰富多彩的世界,其中存在大量问题涉及数量关系的分析,这为学习“一元一次方程”提供了大量的现实素材.在本章教科书中,实际问题情境贯穿于始终,对方程解法的讨论也是在解决实际问题的过程中进行的,“列方程”在本章中占有突出地位,全章教科书按照讨论实际问题的线索而展开.在本章的教学和学习中,要充分注意方程的现实背景,通过大量丰富的实际问题,反映出方程来自实际又服务于实际,加强对于方程是解决现实问题的一种重要数学模型的认识.鉴于本章的学习对象是七年级学生,教科书的叙述力求通俗易懂,在正文中避免过多直接使用“数学模型”等词,而是通过具体例子反复强调方程在解决实际问题中的工具作用,实际上这就是在渗透建立数学模型的思想.设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的相等关系是设未知数、列方程的基础.在本章的教学和学习中,可以从多角度进行思考,借助图形、表格、式子等进行分析,寻找等量关系,检验方程的合理性.教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用一元一次方程分析和解决它们.本章第3.2节和3.3节中,与解方程相比,列方程居于次要位置,实际问题中的数量关系较简单,讨论它们可以使学生对列方程有初步认识.第3.4节的例1和例2是数量关系稍复杂的实际问题,讨论它们可以使学生对列方程有进一步认识,了解列方程的一般思路.这体现了本章在列方程上由浅入深的整体安排,教学中应注意体会教材前后的联系与变化.利用一元一次方程解决问题的基本过程(见前面的图),在本章中反复出现并且逐步细化,这有助于从整体上认识一元一次方程与实际问题的关系,请注意在教学中不断强化对它的认识.3. 抓住方程的主线,复习并加深对相关预备知识的认识从数学学科内部来看,整式及其加减运算是一元一次方程的预备知识;而从应用的角度来看,一元一次方程要比整式用得更普遍、更直接.通过本章学习,不仅可以复习有理数运算和合并同类项、去括号等整式加减运算的内容,而且可以进一步体会看似抽象的整式运算在解决实际问题中的用处,从而加深对相关内容的认识.在本章的教学中,希望能够时刻关注教学重点,注意抓住方程这条主线,突出围绕一元一次方程的讨论,注重解方程的基本功训练,结合方程的解法复习已学整式的知识,帮助学生认识数、式与方程间的联系.4. 关注培养学习的主动性和探究性课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性.本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣.在本章的教学中,应注意引导学生从身边的问题研究起,主动收集寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流,在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.在本章的教科书中,安排了许多可提供学生主动进行探究的内容,其中既涉及列方程又涉及解方程,例如3.4节“实际问题与一元一次方程”中的探究1~3就是为提高分析和解决问题的能力而安排的探究性内容,本章的“数学活动”及“拓广探索”栏目下的习题等也设置了很多探究性问题,例如讨论月历中的数字排列规律及由此产生的计算规律等有趣的问题.采用什么方式进行这些内容的教学是需要关注的问题.具体教学方式可能会因时因地因人而易,但是各种方式都应注意鼓励学生积极探究.当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经过自己的努力来克服困难的过程中体验如何进行探究活动,而不要替代他们思考,不要过早给出答案.应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获.5. 关注数学思想方法的教学和学习前面已经说过,本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程模型这一过程中蕴涵的模型化(包括符号化)的思想;另一个是解方程的过程中蕴涵的化归思想.在本章的教学和学习中,不能仅仅着眼于个别题目的具体解题过程,而应关注对以上思想方法的渗透和领会,从整体上认识问题的本质.数学思想方法是通过数学知识的载体来体现的,对于它们的认识需要一个较长的过程,既需要教科书的渗透反映,也需要教师的点拨,最终还需要学生自身的感受和理解.数学思想方法对一个人的影响往往要大于具体的数学知识,例如对解方程的本质有比较透彻的认识,就容易主动地探究具体方程的解法,这远比死记硬背方程的解法步骤的效果要好.因此,我们需要关注数学思想方法的教学和学习,希望教师在如何深入浅出地进行这方面的教学上不断探索.6. 关注基础知识和基本技能,适当加强练习巩固本章内容包括一元一次方程的概念、解法和应用.一元一次方程是最基本的代数方程,对它的理解和掌握对于后续学习(其他的方程以及不等式、函数等)具有重要的基础作用.因此,教学和学习中应注意打好基础.由于本章教科书是以分析解决实际问题为线索展开的,方程解法的讨论安排于分析解决问题的过程之中,但在前面几节解方程是重点.如缺乏对教材设计意图的理解,可能会对它们有所忽视,而掌握方程解法是必须完成的教学目标,所以在教学和学习中应注意对基础知识和基本技能进行归纳整理,使得它们在学生头脑中留下较深刻的印象.从学习心理学的角度看,学生需要通过必要的练习途径来掌握基础知识和基本技能,所以教学和学习中还要注意适当加强对解方程的练习.这里所说的“适当加强”并非一味强调增加练习的数量,而是强调练习要着重在基础内容上,要加强针对性,使学生打好必需的基本功.对于教科书中的练习题以及“复习巩固”“综合运用”栏目下的习题,应切实掌握.在此基础上,再探究。
第三章智慧的数学第一节七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。
如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。
当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。
七桥问题引起了著名数学家欧拉(1707—1783)的关注。
他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。
这就是说,七桥问题是无解的。
这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。
如果画笔经过一个n次,那么就有2n条线与该点相连结。
因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。
综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
欧拉定理:如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。
一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
第3章题目及答案本章题目缺五个选择题和名词解释题,我已编不出来,请另请高手补上!一、选择题(本章内容很难编拟选择题,只编五个)1.最早提出“大众数学”这一口号的是A.波利亚 B.佩里 C.克莱因 D.弗赖登塔尔( D )2.教育部推出《全日制义务教育数学课程标准(实验稿)》的具体时间是A.2003年4月 B. 1999年9月 C.1999年3月 D.2001年7月( D )3.《全日制已无教育数学课程标准》将义务教育阶段学习时间划分为:A.两个学段 B.三个学段 C.四个学段 D.五个学段(B)4.《全日制已无教育数学课程标准》新增了A.统计内容 B.概率内容 C.统计与概率内容 D.空间与图形(B)5.解放后我国基础教育数学课程发展的“自我探索发展阶段”大致在A.1950年1957年 B.1977年至1988年 C.1958年至1965年 D.1966年至1976年(C)2.二、填空题1.在20世纪初发生的第一次国际数学课程改革,史称。
(克莱因—佩里运动)2.在20世纪中期发生的第二次国际数学课程改革,史称。
(新数运动)3.从20世纪80年代初开始一直延续至今的第三次数学课程改革,倡导“问题解决”和. (大众数学)4. “新数运动”由美国著名心理学家领导。
(布鲁纳)5.教育部于1978年颁布的《全日制十年制学校中学数学教学大纲(试行草案)》对教学内容的确定提出了“精简、增加、”的六字方针。
(渗透)6.应试教育向素质教育转变时期,我国初中数学课程的发展暴露出一些问题。
存在“繁、难、偏、”的状况。
(旧)7.数学新课程标准按照全日制义务教育数学课程与教学目标将内容分为“数与代数”、“空间与图形”、“”、“实践与综合”四个领域。
(统计与概率)8. 1959年9月,布鲁纳发表的题为《教育过程》的报告,从、早期教育思想、发现法学习、教材趣味性四方面为教育课程改革提出了全新的思想理念。
(结构思想)9. 1980年4月,美国数学教师协会公布的文件《行动议程——20世纪80年代数学教育的建议》指出,必须把“”作为80年代中学数学的核心。
笛卡儿和费尔玛创立解析几何解析几何的创立,主要归功于法国的笛卡儿和费尔玛.若内·笛卡儿(Rene Descartes,1596~1650),通常把他看成是近代哲学的开创者.他的哲学著作焕发着一股从柏拉图到当时的任何哲学名家的作品中全找不到的清新气息.笛卡儿虽然是近代数学的开创者之一,但是确切地说,他在数学和自然科学上的成就,只是他哲学成果在科学上的表现.1596年3月21日,笛卡儿出生于法国图朗的拉艾,二岁丧母,深受父亲溺爱.父亲是布列塔尼地方议会的议员,握有一份还相当可观的地产.笛卡儿8岁那年(1604)被送到法国当时最好的学校“拉夫赖士的耶稣会学校”接受教育.八年中这个学校给他打下的数学根底,比当时在大多数大学里能够获得的根底似乎还强得多.1612—1616年笛卡儿遵父命去普瓦捷大学学习法律.因为感到巴黎的社会生活气氛十分繁嚣,于是退避到郊区圣日耳曼的一个隐僻处所,在那里研究几何学.然而朋友们还是刺探出了他的踪迹.他为了确保更充分的安静,便到荷兰投了军(1617).由于那时候荷兰正太平无事,他似乎享受了两年不受干扰的沉思.然而, 30年战争(1618~1648年欧洲以德意志为主要战场的战争)一起,他又加入了巴伐利亚军(1619).就在1619年到 1620年之间的冬天,他呆在巴伐利亚一间现在很有名的“火炉子”一般的房间里,整天潜思.据他自己述说,当他出来的时候,已经悟出了自己赋有的特殊使命,他的哲学也已经半成,笛卡儿是一个懦弱胆小、奉行教会仪式的天主教徒.1632年他完成了重要论文《宇宙论》(Le Monde),但不敢发表,因为里面有两个异端学说:地球自转和宇宙无限.1637年他发表了《屈光、流星和几何学》,而他最有名的《方法谈》(Discours de La Method)就是这部选集的哲学导言.1641年笛卡儿发表了他的哲学杰作《第一哲学沉思集》,三年后出版巨著《哲学原理》,全面地阐述了他的形而上学和科学理论.笛卡儿在荷兰一住就是20年.由于法国驻斯德哥尔摩大使沙尼雨的介绍,他和瑞典克丽斯蒂娜女王有了书信往还,克丽斯蒂娜美丽、热情而博学.然而和大部分君主一样,以为自己既然是君主就有权浪费伟人的时间.女王请求笛卡儿亲临她的宫廷;派了一艘军舰去迎接(1649年9月).女王想每天听笛卡儿讲课,但是除在早晨5点钟以外又腾不出其他时间.斯堪的纳维亚冬日的晨寒对不习惯起早、体质孱弱的笛卡儿实在是一种灾难.那时,沙尼雨又害了重病,笛卡尔又得去照料.大使健康复原,笛卡儿却病倒了,从此一病不起.1650年2月,这位哲学巨人终于长辞人世.笛卡儿对几何学的伟大贡献是发明坐标几何,固然还不完全是最后形式的坐标几何.他在《几何学》(中译本,袁向东译,商务印书馆,1992)中说:“在分析问题中,若认为该问题可解时,首先把要求出的线段与所求的未知量,用名称表出.然后,弄清已知和未知线段的关系,按照正确的逻辑顺序,用两种方法来表示同一量,并建立相等的关系,把最后得到的式子叫做方程式.”显然,笛卡儿几何是以“解析”作为基本的方法的,即把对图形的研究转化为对方程式的研究,这充分显示了笛卡儿的卓越睿智,确是几何学研究中的一次大革命.在上述思想指导下,他做了如下工作:(1)引入“坐标”观念根据笛卡儿的思想,当满足方程式的变数(x,y)变化的时候,坐标(x,y)的点画出的是曲线,从而,希腊人认为“线是点的集合”,笛卡儿却认为“线是点运动的结果”.由此,笛卡儿关于“线”的定义与希腊人的显著区别在于“动”与“静”.这种思维方法给牛顿等大数学家以莫大影响.(2)利用“坐标法”提出曲线表示成方程的思想考虑二元方程F(x,y)=0的性质,满足这方程x,y的值无穷多,x变化时y也跟着变,x、y不同数值所确定的平面上许多不同的点,便构成了一条曲线.这样一个方程就可以通过几何上的直观来采用合适的方法去处理.以后笛卡儿又进一步提出了用方程表示曲线的思想,即用代数的方法研究曲线的性质.笛卡儿创立了坐标几何,但并没有引入现今通用xoy直角坐标系.他只是在一条长为x 的线段AB的端点B处,垂直地画一条长为y的线段CB,表示x与y的对应.在17世纪的数学史上,另一位杰出的数学家是费尔玛(Pierre Fermat,1601~1665).费尔玛,1601年8月20日出生于法国的图卢兹附近的一个皮革商家庭,大学时专修法律,毕业后当了律师,曾经任图卢兹议会顾问三十余年.费尔玛在30岁后才从事数学研究,由于他博闻饱学,精通数种文字,掌握多门自然科学知识,又结交了笛卡儿、梅森、惠更斯等著名学者,经常书信往来,讨论数学问题,因此他的成就诸多.可惜生前较少发表论著;多数成果留在手稿、通信或书页空白处,死后才由儿子整理汇集成书,在图卢兹出版,才被后世誉为“业余数学之王”.费尔玛也是解析几何的一位创立者.从他与帕斯卡以及罗伯瓦尔的通信中可知,早在笛卡儿的《几何学》发表以前,费尔玛已经提出了研究曲线问题的一般方法,他从希腊几何学的成就出发,用他所提出的一般方法,对阿波罗尼关于轨迹的某些失传的证明作出补充.1630年他把这一工作写成《平面与立体轨迹引论》的小册子.可惜它被拖延到了1679年才出版,那时费尔玛已经死了14年.费尔玛通过与帕斯卡的通信讨论赌金分配问题,得出正确解答,与帕斯卡、惠更斯一起被誉为概率论的创始人.17世纪的数论几乎是费尔玛的天下,证明和提出许多命题,如形如4n+1的素数均能唯一地表示为两个平方数之和;如果P是素数,a是正整数,则 P│(a p-a)(费尔玛小定理)等.著名的费尔玛大定理是指方程x n+y n=z n(n>2)没有正整数解.费尔玛在页边写道:“我发现了这定理的一个极妙的证法,但页边太窄,写不下”.但是,这一极妙的证法显然有误.此后的三百余年,无数数学家为之奋斗,始终是一悬案.1993年6月,在美国普林斯顿工作的数学家 A·怀尔斯(Wiles)和英国数学家R·泰勒(Taylor)宣布已证明了费马的猜想.但证明中有些地方不妥,经过改进之后,在1994年获得世界公认.。