原油减压渣油
- 格式:doc
- 大小:70.00 KB
- 文档页数:9
中国石化原油分析报告1.1 大庆原油一般性质大庆原油一般性质为:密度为0.8629g/ml,凝固点29℃,硫含量为0.11%,氮含量1586ppm,酸值0.08,金属含量中镍、钒含量分别为4.36ppm和0.13ppm,属低硫中质石蜡基原油。
大庆<350℃轻收为30.22%。
>540℃总拔出率为63.1%。
1.2 大庆原油直馏馏分性质大庆原油0~140℃的石脑油馏分收率为5.94,氮0ppm,硫含量为0.01874%,硫醇硫31ppm。
大庆原油0~180℃的石脑油馏分收率为8.99,氮0ppm,硫含量为0.020697%,硫醇硫36ppm。
大庆原油140~240℃的收率为8.83,冰点为-48℃,硫含量为0.022124%,硫醇硫39ppm,酸度7.62831mgKOH/100ml,烟点为32mm,芳烃含量为8.02%。
大庆原油180~350℃的收率为20.92,十六烷指数59.48,硫含量为0.036978%,酸度9.44417mgKOH/100ml。
大庆原油240~350℃的收率为15.13,十六烷指数59.98,硫含量为0.043133%,酸度9.80416mgKOH/100ml。
1.3 大庆原油裂化原料及渣油性质350~540℃蜡油馏分及>540℃、>350℃渣油性质如下:大庆原油350~540℃的收率为32.89,密度为0.8634g/ml,硫含量为0.103749%,氮含量678ppm。
大庆原油>540℃的收率为36.9,密度为0.9278g/ml,硫含量为0.188964%,氮含量3680ppm。
残炭9.77%,金属分析数据中镍、钒含量分别为11.81ppm和0.36ppm;组成分析数据中,沥青质为0.06%。
大庆原油>350℃的收率为69.78,密度为0.8963g/ml,硫含量为0.148807%,氮含量2265ppm。
残炭 5.59%,金属分析数据中镍、钒含量分别为 6.24ppm和0.19ppm;组成分析数据中,沥青质为0.03%。
学习总结1 渣油平衡渣油主要由三套常减压产出,1#、2#常减压渣油残炭较低,3#常减压因实施减压深拔,渣油残炭较高。
渣油去向主要有以下几个:1、道路沥青,石蜡基原油的减渣延度、蜡含量很难满足要求,一般中间基、环烷基原油减渣的芳烃、胶质含量较高,沥青质含量适中,饱和烃含量低,蜡含量低的渣油是生产沥青的好原料;2、高硫重质原油减渣去延迟焦化加工;3、催化掺渣(苏北、达混等);4、渣油加氢(未开工)。
从表格看,渣油的生产装置和消耗装置的量基本相当,但实际生产中,渣油往往面临涨库压力,原因主要有:(1)1#焦化较难达到满负荷生产;(2)由于购买原油劣质化,渣油性质变差,导致催化掺渣比下降;(3)沥青出厂困难。
与渣油平衡有关的优化方案:(1)减压深拔,减少渣油产出量,多出的蜡油组分去加氢裂化加工;(2)焦化循环油部分去常减压加工,分割出循环油中蜡油组分,降低焦化循环比,提高焦化新鲜进料量;(3)燃料油价格高时,催化油浆做燃料油出厂,焦化提渣油处理量;(4)根据沥青和石油焦市场价格变动,安排渣油去焦化和沥青装置的分配比例。
购买适合生产沥青的荣卡多、沙重和科威特原油,减少焦化加工任务。
(5)购买出催化渣油料的原油(达混等)或者改善催化蜡油性质,提高掺渣比。
2 蜡油平衡分公司蜡油来源主要有直镏蜡油和焦化蜡油,焦化蜡油与直镏蜡油相比,氮含量高,不饱和烃含量高,特别是两环芳烃含量高,裂化性能差,易结焦,一般情况它与直镏重蜡进蜡油加氢给催化供料,直镏轻蜡进加氢裂化生产石脑油和航煤等组分油。
从上述蜡油平衡表看,分公司蜡油资源是不足的,两套加氢裂化(250万吨/年)长期处于开不满状态,蜡油加氢(260万吨/年)由于受氢气资源限制和焦蜡性质差而导致反应床层压降上升的影响,也没有满负荷生产。
与蜡油平衡有关的优化方案:(1)减压深拔,提高蜡油总量;(2)直镏重柴去加裂;(3)催化柴油去加裂;(4)2#焦化蜡油或3#焦化轻蜡部分供加裂掺炼,降低了催化焦蜡量,提高催化掺渣比。
一、石油的化学组成1.石油馏分按馏程分类初馏点~200℃或~180 ℃汽油馏分200~350 ℃煤、柴油馏分350~500℃(560℃)减压瓦斯油(润滑油馏分、催化裂化原料)> 500 ℃(560℃) 减压渣油> 350 ℃常压渣油(初馏点:加热时馏出的第一滴液体时的温度.)2.原油分类:原油按化学组成分为哪三类,与化学组成关系⑴美国矿务局原油分类法分为石蜡基(大庆),中间基,环烷基⑵特性因数K值分类法:K值大小顺序为:烷烃>环烷烃>芳香烃。
根据K值可以对原油进行分类:K值>12.1 为石蜡基K值=11.5~12.1 为中间基K值=10.5~11.5 为环烷基K值越大,烷烃含量越大,芳烃含量越少。
3.我国原油特点(1)偏重常规油(2)H/C偏低(3)低硫高氮(4)Ni多V少(5)轻馏分少,重馏分多。
4.石油化学组成表示方法:.石油馏分的化学组成:(元素,单体烃,族组成,结构族组成)目前研究石油化学组成的物理和化学的分析方法主要有:GC,LC,MS,NMR。
(1)元素组成①单体化合物组成②族组成族是指化学结构相似的一类化合物。
直馏汽油馏分的族组成:以烷烃、环烷烃、芳香烃含量来表示。
裂化汽油的族组成:用烷烃、环烷烃、芳香烃、的含量来表示。
煤柴油馏分和减压馏分的族组成液相色谱法:饱和烃(烷烃+环烷烃)、轻芳烃、中芳烃、重芳烃、非烃组分。
质谱法:正构烷烃、异构烷烃、不同环数的环烷烃、不同环数的芳烃、非烃化合物。
常压渣油与减压渣油的族组成:四组分组成:用溶剂处理和液相色谱法相结合,分成饱和分、芳香分、胶质、沥青质。
六组分组成:将胶质可以进一步分为轻、中、重胶质。
八组分组成:可以将芳香分进一步分成轻、中、重芳烃。
③结构族组成:测单元结构的组成。
任何烃类化合物,不论其结构如何复杂,都可以看成是由烷基、环烷基和芳香基三种结构单元所构成的。
结构族组成只表示在分子中这三种结构单元的含量,而不涉及它们在分子中的结合方式。
摘要:用蒸馏的方法将原油分离成不同沸点范围油品(称为馏分)的过程。
包括三个工序:①原油预处理:即脱除原油中的水和盐。
②常压蒸馏:在接近常压下蒸馏出汽油、煤油(或喷气燃料)、柴油等的直馏馏分,塔底残余为常压渣油(即重油)。
③减压蒸馏:使常压渣油在8kPa左右的绝对压力下蒸馏出重质馏分油作为润滑油料、裂化原料或裂解原料,塔底残余为减压渣油。
关键词:蒸馏原油本身是由烃类和非烃类组成的复杂混合物,其直接利用价值较低,需要将其加工成汽油、煤油、柴油、润滑油以及石油化工产品。
原油蒸馏是原油加工的第一道工序,在炼油厂中占有非常重要的地位。
目前炼油厂常采用的原油蒸馏流程是双塔流程或三塔流程。
双塔流程包括常压蒸馏和减压蒸馏,三塔流程包括原油初馏、常压蒸馏和减压蒸馏。
大型炼油厂一般采用三塔流程。
依据原油加工成产品的用途不同,原油的蒸馏工艺流程大致可分为三类:①燃料型,以生成汽油、煤油、柴油、减压馏分油以及重质燃料油为主;②燃料-润滑油型,以生成汽油、煤油、柴油、减压馏分油以及重质燃料油为主,对减压馏分油的分离精度要求较高,减压塔侧线馏分的馏程相对较窄;③化工型,以生成汽油、煤油、柴油、减压馏分油以及重质燃料油为主,汽油、煤油和部分柴油用作裂解原料,因此其分离精度要求较低。
上述三种类型的原油蒸馏流程基本相同,下面以燃料型来介绍原油蒸馏的基本流程,包括原油初馏、常压蒸馏和减压蒸馏三部分。
原油常减压蒸馏流程示意图(1) 原油初馏原油经过换热,温度达到80~120℃左右进行脱盐、脱水(一般要求含盐小于10mg/L,含水小于0.5wt%),再经换热至210~250℃,此时较轻的组分已经气化,气液混合物一同进入初馏塔,塔顶分出轻汽油馏分,塔底为拔头原油。
(2) 常压蒸馏拔头原油经过换热、常压炉加热至360~370℃,油气混合物一同进入常压塔(塔顶压力约为130~170KPa)进行精馏,从塔顶分出汽油馏分或重整馏分,从侧线引出煤油、轻柴油和重柴油馏分,塔底是沸点高于350℃的常压渣油。
二0一四年二季度索科尔原油评价报告二O一四年二季度研究院1 前言为了配合分公司的生产,研究院于2014年5月19日由锦州港采集索科尔原油,并对其进行了包括索科尔原油性质分析、原油实沸点蒸馏及所得各馏份性质分析在内的原油评价,现将各项分析结果概述如下。
2 原油评价2.1 原油性质原油性质分析列于表1。
表1 索科尔原油性质从表1数据看,索科尔原油的密度较小,硫含量、氮含量、残碳、酸值较小,重金属含量较低。
2.2 索科尔原油分类将索科尔原油分别切割250~275℃和395~425℃馏份作为第一、第二关键馏分。
按关键馏分分类法进行分类,结果见表2。
索科尔原油的基属分类为低硫中间基原油。
原油分类中间基中间基关键馏分第一关键馏分第二关键馏分沸点范围250~275℃395~425℃指标实测指标实测密度(20℃)/Kg/m3821.0-856.2 851.5 872.3-930.5 915.0特性因素(K)11.5-11.9 11.5 11.5-12.2 11.8比重指数(O API)33-40 34 20-30 22原油硫含量(m/m)/% 0.2623原油基属低硫中间基原油2.3 每20℃馏分油收率在实沸点蒸馏装置上将索科尔原油每间隔20℃切出馏分,各馏分累计收率列于表3。
索科尔原油初馏~350℃馏分的收率为71.14%,350~500℃馏分的收率为19.05%,500℃前馏分的收率为90.19%,减压渣油占原油的8.90%。
表3 索科尔原油实沸点窄馏分收率2.4 直馏产品性质将实沸点蒸馏所得的各种燃料油及蜡油馏分进行分析,各馏分性质如下。
2.4.1 重整原料油初馏~130℃馏分作为重整原料油,性质分析列于表4。
表4 索科尔原油的重整原料性质分析项目初馏~130℃分析方法收率(m/m)/% 15.08 —密度(20℃)/kg.m-3726.2 GB/T1884-2000砷含量/μg.Kg-1硫含量/ug.g-1-- SH/T0689铜片腐蚀/级1b GB/T5096馏程/℃GB/T6536 初馏4310%/30%(v/v) 72/8750%/70% (v/v) 98/11090%/95% (v/v) 165/--干点165氮含量/μg.g-1-- SH/T0657酸度/mgKOH.(100mL)-10.85 GB/T258胶质/% -- GB/T509硫醇/μg.g-110.30 GB/T1792水溶性酸碱中性GB/T259特性因素(K)12.0组成/% GB/T11132 饱和烃90.15烯烃0.62芳烃9.232.4.2 喷汽燃料130~190℃、190~240℃两馏分作为喷汽燃料,其性质分析列于表5。
中国石化原油分析报告1.1大庆原油一般性质大庆原油一般性质为:密度为0.8629g/ml,凝固点29℃,硫含量为0.11%,氮含量1586ppm,酸值0.08,金属含量中镍、钒含量分别为4.36ppm和0.13ppm,属低硫中质石蜡基原油。
大庆<350℃轻收为30.22%。
>540℃总拔出率为63.1%。
1.2大庆原油直馏馏分性质大庆原油0~140℃的石脑油馏分收率为5.94,氮0ppm,硫含量为0.01874%,硫醇硫31ppm。
大庆原油0~180℃的石脑油馏分收率为8.99,氮0ppm,硫含量为0.020697%,硫醇硫36ppm。
大庆原油140~240℃的收率为8.83,冰点为-48℃,硫含量为0.022124%,硫醇硫39ppm,酸度7.62831mgKOH/100ml,烟点为32mm,芳烃含量为8.02%。
大庆原油180~350℃的收率为20.92,十六烷指数59.48,硫含量为0.036978%,酸度9.44417mgKOH/100ml。
大庆原油240~350℃的收率为15.13,十六烷指数59.98,硫含量为0.043133%,酸度9.80416mgKOH/100ml。
1.3大庆原油裂化原料及渣油性质350~540℃蜡油馏分及>540℃、>350℃渣油性质如下:大庆原油350~540℃的收率为32.89,密度为0.8634g/ml,硫含量为0.103749%,氮含量678ppm。
大庆原油>540℃的收率为36.9,密度为0.9278g/ml,硫含量为0.188964%,氮含量3680ppm。
残炭9.77%,金属分析数据中镍、钒含量分别为11.81ppm和0.36ppm;组成分析数据中,沥青质为0.06%。
大庆原油>350℃的收率为69.78,密度为0.8963g/ml,硫含量为0.148807%,氮含量2265ppm。
残炭 5.59%,金属分析数据中镍、钒含量分别为 6.24ppm和0.19ppm;组成分析数据中,沥青质为0.03%。
探讨减压渣油减粘裂化工艺过程优化摘要:减粘裂化是重油轻质化的一种重要手段,其目的主要是以重质高粘度油品为原料,改善其倾点,生产符合规格的燃料油,或者掺入少量的轻质油即可达到要求的燃料油,具有工艺技术成熟、装置投资少、操作费用低、可靠性高,不生成焦炭等特点。
本文主要对减粘裂化反应机理进行了分析,并提出了减粘装置裂化工艺过程优化措施。
关键词:渣油;减粘裂化;过程优化减粘裂化是重油轻质化的一种重要手段,实质上是一种轻度热裂化过程虽然减粘裂化工艺已经比较成熟,但对于反应器仍保持炉管式、塔式反应器的基本形式。
在目前的大量工业化工艺装置不进行较大改动的情况下,如何更为有效地延长生产周期,增加中间馏分油产率,进一步改善产品质量,是一个当前需要解决的较为实际的问题。
1减粘裂化反应机理渣油通常指的是常减压蒸馏不能再汽化的减压蒸馏塔底残油,即减压渣油。
在渣油的热裂化过程中,裂化反应和缩合反应是主要反应形式,前者为吸热反应,后者为放热反应,二者是同时存在、相互联系的。
渣油的热反应过程并不是完全的随机反应过程,通过控制一定的反应条件,可以使反应有选择地进行。
渣油减粘裂化反应的根本目的是通过裂化反应使平均分子量和胶团的直径变小,表现在物理性质上是其粘度变小和凝点降低,得到少量裂化轻质油和裂化气。
缩合反应的存在则使部分小分子变成大分子,同时得到少量裂化轻质油和裂化气。
表现在物缩合反应产生新的胶核,甚至生成焦炭,使油品的安定性变差。
随着裂解深度的提高,热失重不断增加,并存在着一个突变温度,在这个温度以上渣油热失重率直线上升,出现明显的放热峰和吸热峰,这个温度就是开始结焦的温度,简称初始结焦温度。
初始结焦温度以下,以裂解反应为主,在初始结焦温度以上,随反应温度提高,缩合反应转化为主导反应。
因此,选择合适的反应条件使反应向有利于裂化反应的方向进行,降低缩合反应速度和抑制缩合反应的大量进行是减粘裂化的主要目的。
2减粘装置裂化工艺过程优化2.1缓和加热,防止局部过热生焦减粘裂化反应除了裂解反应外,同时还存在着结焦反应。
渣油泛指C12以上的石油加工混合物重油(又称燃料油)燃料油指C9到C12的石油加工混合物它又分为轻质燃料油和重质燃料油。
化工石脑油做了如下总结:沸点<20℃的C1-4碳组成名称石油气用途化工原料沸点20-100℃的C5-7碳组成名称轻汽油用途溶剂、航空汽油沸点70-200℃的C6-12碳组成名称重汽油用途车用油沸点200-270℃的C12-15碳组成名称煤油用途照明油、喷气机油沸点200-270℃的C15-18碳组成名称柴油用途柴油机燃料沸点>300℃的C16-20碳组成名称润滑油用途润滑油脂沸点>300℃的C18-22碳组成名称凡士林用途润滑、医用沸点>300℃的C20-30碳组成名称石蜡用途化工、轻工原料沸点>300℃的C30-40碳组成名称沥青用途铺路渣油原油经减压蒸馏所得的残余油。
又称减压渣油。
有时将从常压蒸馏塔底所得的重油称为常压渣油。
色黑粘稠,常温下呈半固体状。
渣油另一重要用途是用作燃料油。
煤油轻质石油产品的一类,煤油的质量依次降低:动力煤油、溶剂煤油、灯用煤油、燃料煤油、洗涤煤油。
重油重油是原油提取汽油、柴油后的剩余重质油,重油又称燃料油,呈暗黑色液体,重油除了粘度高外,其硫含量、金属含量、酸含量和氮含量也较高,重油及沥青砂资源是世界上的重要能源,随着常规石油的可供利用量日益减少,重油正在成为下世纪人类的重要能源。
渣油,其性质与原油性质有关。
在石油炼厂中,渣油常用于加工制取石油焦、残渣润滑油、石油沥青等产品,或作为裂化原料。
在石油化工生产中,渣油可通过部分氧化法生产合成气或氢气,或作为蓄热炉裂解制乙烯的原料。
渣油和油浆的区别渣油主要是指从常减压装置底层出来的重组分,其中常压装置出来叫做常压渣油,减压装置出来的叫做减压渣油。
渣油一般作为焦化原料来使用。
油浆主要是指炼厂催化装置底层出来的重组分,主要作为燃料来使用。
煤油,主要用于点灯照明和各种喷灯、汽灯、汽化炉和煤油炉的燃料;也可用作机械零部件的洗涤剂,橡胶和制药工业的溶剂,油墨稀释剂,有机化工的裂解原料;玻璃陶瓷工业、铝板辗轧、金属工件表面化学热处理等工艺用油;有的煤油还用来制作温度计。
减压渣油1、前言焦化装置以减压渣油为主要原料,主要产品为焦化汽油、柴油、蜡油及石油焦,是实现重油轻质化的主要手段,它以加工原料和加工工艺的灵活性日益受到炼油企业的重视。
重油催化裂化(RFCC)外甩油浆是改善催化裂化工况的常用手段,而该油浆的出路一直是各炼厂需解决的头痛问题。
济南分公司50万吨/年延迟焦化装置原设计原料为减压渣油:RFCC油浆为9:1的混合原料,后来该装置又成功开发了浮渣回炼、甩油回炼、全厂污油回炼等新工艺,为实现对炼厂原油的吃干榨尽起到了重要作用。
济南分公司焦化装置曾以不同比例掺炼过RFCC油浆,但RFCC油浆作为焦化装置的原料究竟有何利弊,掺炼比例多少合适,有何经济效益?本文针对济南分公司焦化装置掺炼RFCC催化油浆的实际情况,从其对产品分布影响、产品质量影响、设备磨损情况、经济效益四个方面进行分析,以期找到问题的最佳答案,实现炼厂效益最佳化。
2、RFCC油浆与减压渣油性质比较济南分公司焦化装置原料减压渣油来自常减压装置,以胜利油田临盘原油为主;RFCC油浆来自80万吨/年催化裂化及140万吨/年催化裂化装置,内含有一定的催化剂固体粉末,一般为2g/l,最高达到过9.2g/l(2003年10月24日分析数据)。
两种原料性质见表1。
由表1可见,与减压渣油相比,RFCC油浆的密度较大,芳烃含量高,残炭、粘度小于减压渣油,S、N含量与减压渣油基本相近。
表1 RFCC油浆及减压渣油的主要性质分析项目减压渣油RFCC油浆密度g/m3 982.4 1071.8 粘度(100℃)mm2/s614.7 41.50残炭%(m)16.34 15.74硫含量%(m)12510 10168凝固点℃37 22盐含量%/ 0.18总氮ppm 6371 6358族组成饱和烃%21.65 20.41芳烃%37.96 60.54胶质%38.27 16.53沥青质% 2.12 2.523、焦化装置掺炼RFCC油浆生产概况济南分公司50万吨/年延迟焦化装置于2002年11月28日一次开车成功,开工初期全部以减压渣油作为原料。
2003年3月份以后,基本按照RFCC油浆掺炼比例为10%的设计值作为原料,直至7月份第一周期按计划停工。
焦化装置第二周期生产于2003年8月3日开车成功,其中8月份全部以减压渣油作为原料以110%负荷生产9月份曾掺炼部分常压渣油作为原料。
进入2003年10月份以后,随着全厂生产方案的调整,焦化装置的负荷及RFCC油浆掺炼比例出现大幅度调整,本文所取数据多来自这一时期。
2003年10月1日~8日,焦化装置仍然全部以减压渣油为原料,10月8日以后开始大比例掺炼油浆,由于罐区来料中RFCC油浆掺炼比例有时无法确定,且11月中旬炼厂原油中掺入黄岛油和沙轻原油,该文仅采取了较准确的掺炼比为25%、33%、41%的数据进行分析,该期间原料性质亦无大变化。
10月18日~25日,油浆掺炼比例为25%,处理量36~40T/H;11月1日~5日,RFCC油浆掺炼比为41.6%,处理量35T/H,该期间由于处理量较低,为提高加热炉管内介质线速度,采取了部分蜡油回炼进原料罐的措施;11月24日~30日,油浆量维持在20T/H左右,掺炼比为33%,装置以62.5T/H的处理量满负荷生产。
4、掺炼RFCC油浆后对产品收率的影响掺炼RFCC油浆前后主要产品收率变化见表2。
表2 掺炼RFCC油浆前后主要产品收率变化注:A、掺炼比为41%时部分蜡油回炼作原料;B、掺炼比为33%时改为生产-10#柴油方案。
从表2可以看出,焦炭产率随着掺炼量的增加而明显增加,焦化汽柴油收率及装置总液收明显下降。
如掺炼比为33%时,较不掺炼RFCC油浆时对比,焦炭收率增加4.58%,装置总液收降低7.78%。
另外,本次RFCC油浆掺炼比达到41%时,由于加工负荷较低(仅56%),采取了部分蜡油回炼进原料罐的方式,(目的是为了增加加热炉管内线速度避免炉管结焦,增加原料线速度减少油浆中催化剂固体颗粒沉积,)因此该段时期汽柴油收率较高,但焦炭收率高达38.67%,装置总液收仅52.38%,同样说明了以上观点。
分析认为,掺炼RFCC油浆后,由于油浆中芳烃含量高,油浆中约有50%左右的蜡油馏分,该组分难以裂解,相对减压渣油而言易于结焦,因此掺炼油浆后蜡油收率会有所上升,汽柴油收率则下降明显,焦炭收率明显升高。
5、掺炼RFCC油浆后对产品质量的影响由于我装置仅化验分析焦化汽柴蜡油的密度及馏程,不分析族组成,因此由于分析数据主要受控制手段的影响,生产上焦化汽柴蜡油的密度及馏程变化不大,在此未予列出;焦化蜡油残炭在生产负荷不变的情况下随着油浆的掺炼比不同应有所变化,但由于济南分公司焦化装置在掺炼油浆期间生产负荷大幅度波动,蜡油残炭受加热炉注汽量的影响较大,也不具有分析比较价值;焦炭中硫含量又主要受济南分公司原油硫含量的影响,因此我们仅分析比较受掺炼油浆影响较大的焦炭灰份予以分析比较,见表3。
表3 掺炼油浆前后焦炭灰份变化油浆掺炼比% 0 9.2 25 33 41焦炭灰份% 0.15 0.21 0.48 0.58 0.36由表3可见,随着油浆掺炼比的增大,焦炭灰份呈明显上升趋势。
油浆掺炼比为41时焦炭灰份反倒为0.36%,分析认为由于蜡油大比例回炼,生焦率较高,稀释了焦炭灰份所致。
6、掺炼RFCC油浆后存在的生产问题6.1 对产品质量的影响在焦化原料中掺炼RFCC油浆首先必须考虑对焦炭质量的影响,主要指对焦炭灰份的影响,因为RFCC油浆中的固体颗粒的带入首先反映在焦炭灰份升高上。
2B焦炭灰份指标为0.5%,在未掺炼RFCC油浆的情况下,焦炭灰份一般低于0.2%,一旦掺炼量过大或RFCC油浆中固体含量过高,都极易引起焦炭灰份超标。
11月中旬,原料为沙轻原油期间,焦炭灰份最高达1.73%(11月12日数据),已属不合格品(3B级焦炭为1.2%)。
后切断罐区来的RFCC油浆后(仅保留80万吨/年催化裂化来的油浆),焦炭灰份迅速降至0.39(11月22日数据),焦炭灰份受RFCC 油浆影响极为明显。
这说明为保证焦炭质量,控制RFCC油浆掺炼比及RFCC油浆中的固体含量非常必要.在焦化原料中掺炼RFCC油浆还对焦化蜡油有较大影响。
由于RFCC油浆中芳烃含量较高,该组分难以裂解,因此掺炼油浆后很大一部分又随着焦化蜡油组分作为产品出装置,最终又回到催化裂化装置。
如此循环,既增大了催化、焦化装置的能耗,又使得焦化蜡油质量变差。
前已述及济南分公司焦化蜡油未做出掺炼油浆前后的质量分析对比,但据安庆分公司焦化装置的实际生产数据知,该装置掺炼8%的RFCC油浆后,蜡油族组成中饱和烃由59.17%下降至51.1%,下降了8%,芳烃含量由36.06%增加到41.41%,增加了5.35%,蜡油残炭由0.1%升高至0.35%,可见蜡油质量明显变劣。
6.2 RFCC油浆带水的影响RFCC油浆密度一般都比水大,脱水比较困难,特别是当RFCC油浆若在罐区内与冷渣油混合时,更容易带水。
若原料带水严重,将引起操作大幅波动,其至会出现原料泵、辐射进料泵抽空等严重后果。
因此,在掺炼RFCC油浆时,我装置每次都是先将RFCC油浆来料线油头外甩半小时后再进装置。
尽管如此,仍多次出现罐区来RFCC油浆量不稳,原料罐液面因RFCC油浆带水而异常升高现象。
因此,RFCC油浆掺炼前必须严格脱水。
6.3 原料换热器垢RFCC油浆中含有较多的固体颗粒及稠环芳烃,在换热器内易结垢。
焦化装置原料进装置流程为RFCC油浆与减压渣油经混合器混合后,混合原料依次与柴油、中段循环油、蜡油换热后进入分馏塔,走的均为壳程。
由于RFCC油浆中固体颗粒在换热器壳程中更易沉积,将导致换热器压降增大,检修时抽芯非常困难,换热器管束严重损坏。
该现象已在长岭分公司焦化装置发生过,当时该厂曾试验掺炼RFCC油浆到30%,后来该厂将RFCC油浆进装置换热器改为油浆走管程,且掺炼率严格控制在不大于7%。
6.4 分馏塔底循环过滤器内焦粉沉积结焦RFCC油浆中催化剂固体粉末除在原料换热器内沉积外,另一重要沉积点为焦化分馏塔底。
由于底循环的作用,该固体粉末最终沉积在底循环过滤器内。
另外,在分馏塔底360℃温度下,RFCC油浆较易结焦。
济南分公司焦化装置自从10月份掺炼RFCC油浆以来,焦化分馏塔底循环过滤器经常堵塞,导致底循环泵提不起量,常常用蒸汽反吹扫,仍难以奏效,只好拆开清理,仅11月份就拆开清理3次,拆开后发现过滤器内含较多小焦块及焦粉与催化剂粉末混合后的粉状物,堵塞严重。
而在第一开工周期期间(最大掺炼比为10%),该过滤器未曾拆开清理过,这进一步验证了大比例掺炼RFCC油浆是导致底循环过滤器堵塞的主要原因。
6.5 掺炼RFCC油浆对管线、泵等设备的磨损由于RFCC油浆中催化剂固体颗粒硬度极大,线速度低时会在所过之处沉积,但线速度较大时更会对设备造成严重磨损,尤其是泵体叶轮及底循、炉管等管线,因为介质在该处线速度极高,国内已有多家焦化装置在这上面吃过大亏。
石家庄分公司焦化装置曾因掺炼RFCC油浆使底循环泵叶轮磨损得簿如刀刃,后来更换为专门的RFCC油浆泵。
为此该厂焦化装置现严格控制RFCC油浆掺炼比为5%,最大7%,在此之前焦化装置平均半年被迫停工一次,而今该装置已平稳运行500多天,正争创长周期运行装置;乌鲁木齐炼油厂焦化装置曾因掺炼RFCC油浆使原料泵、底循泵、辐射进料泵叶轮磨损严重全部报费;沧州分公司焦化装置曾因掺炼RFCC油浆使底循环管线磨损的最簿处仅2mm,险些酿成大火,现该厂RFCC 油浆全部做燃料油外卖;福建分公司焦化装置曾因掺炼RFCC油浆将辐射泵出口调节阀阀芯磨损得严重泄漏。
我焦化装置为新建装置,设备磨损带来的危害尚未显现出来。
为减轻磨损带来的损失,济南分公司焦化装置回炼RFCC油浆后曾将辐射泵由倒至1#旧泵,但由于旧泵先天不足,在满负荷下超电流,现仍然运转2#进口泵。
另外,为避免RFCC油浆掺炼比大使加热炉炉管结焦,车间控制较高的注汽量以提高炉管内线速度,加上原料在加热过程中的分解、气化,加热炉管内线速将高达40~50m/s,炉管磨损问题相当严峻。
为此车间已在下次检修计划中将上述易损部位列入重点检测部位。
(催化油浆系统的设计线速度一般<2m/s,因此,焦化装置的设备磨损情况要比催化装置的油浆系统严重得多。
)6.6 掺炼RFCC油浆后因结焦率大而影响处理量生产实践已证明,随着油浆掺炼比的提高装置焦炭产率将大幅度提高,因此当装置满负荷生产时,由于焦炭塔内生焦高度过高带来的危害则显现出来。
2003年12月2日焦化装置提处理量至64t/h,其中油浆量20t/h,(设计装置处理量62.5T/H,油浆掺炼比为10%)当天该塔冷焦过程中焦炭塔出现异常振动,分析认为与生焦高度过高有关,由于上部空间较小,使冷焦时气流在上部鼓泡引起脉动。