(完整word版)小学四年级奥数容斥问题
- 格式:doc
- 大小:31.01 KB
- 文档页数:2
容斥问题涉及到一个重要的原理一一包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。
这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准:按性质a分类与性质b分类(如图1),那么,具有性质a或性质b的事物的个数=Na+Nb-Nad例1•一个班有55名学生,订阅《小学生数学报》的有12人,订阅《今日少年报》的有9人,两种报纸都订阅的有5人。
(1)订阅报纸的总人数有多少?(2)两种报纸都没订阅的有多少人?例2•一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人,两样都会的有多少人?例3.在1到100的全部自然数中,既不是6的倍数也不是5的倍数的数有多少个?例4•艺术节那天,学校的画廊里展了了每个年级学生的图画作品,其中有23幅画不是五年级的,有21幅画不是六年级的,五、六年级参展的画共有8幅。
其他年级参展的画共有多少幅?练习与思考1•将边长分别为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上(如图6),已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少平方厘米?2 . 二(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?3.有62名学生,其中会弹钢琴的有11名,会吹竖笛的有56名,两样都不会的有4名,两样都会的有多少名?4 •某校选出50名学生参加区作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖的,两项比赛都没获奖的有多少人?5 •四(1)班有40个学生,其中有25人参加数学小组,23人参加航模水组,有19人两个小组都参加了,那么,有多少人两个小组都没有参加?6 •在一次数学测验中,所有同学都答了第1、2两题,其中答对第1题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都答错。
四年级奥数专题第26讲容斥问题例1一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业没有做完?”没有人举手。
这个班语文、数学作业都完成的有多少人?例2某班有36个同学,在一次测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
有多少个同学两题都没有答对?例3某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?例4在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?例5光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?习题1.五年级有122名学生参加语文、数学考试,没人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2.四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3.学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?4.五年一班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?5.一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两中报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?6.某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖,已知作文比赛获奖的有14人,数学比赛获奖的有多少人?7.一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人,两样都会的有多少人?8.一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
小学四年级奥数题:容斥问题
容斥原理是四年级奥数中的难题之一,那么这类型的题目应该如何解决呢下面就是小编为大家整理的容斥的四年级奥数题目,希望对大家有所帮助!
习题一
有一根长为180厘米的绳子,从一端开始每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段。
解答:1-180中,3的倍数有60个,4的倍数有45个,而既是3的倍数又是4的倍数的数一定是12的倍数,这样的数有180÷12=15个。
注意到180厘米处无法标上记号,所以标记记号有:(60-1)+(45-1)-(15-1)=89,绳子被剪成90段。
习题二
有一根长为180厘米的绳子,从一端开始每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段。
解答:1-180中,3的倍数有60个,4的倍数有45个,而既是3的倍数又是4的倍数的数一定是12的倍数,这样的数有180÷12=15个。
注意到180厘米处无法标上记号,所以标记记号有:(60-1)+(45-1)-(15-1)=89,绳子被剪成90段。
第35周容斥问题专题简析:容斥问题涉及一个重要原理一一包含与排除原理,也叫容斥原理。
当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如右图所示),那么具有性质a或性质b的事物的个数是N a 十Nb- Nab。
例1:一个班有48人,班主任在班会上问“谁做完语文作业了?请举手!”有37人举手。
又问:“谁做完数学作业了?请举手!”有42人举手。
最后问“谁语文、数学作业都没有做完?“没有人举手。
求这个班语文、数学作业都完成的人数。
练习一:1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65 人,数学成绩优秀的有87 人。
语文、数学成绩都优秀的有多少人?2、四(1)班有54 人,订阅<小学生优秀作文》和(数学大世界)两种读物的有13 人,订《小学生优秀作文》的有45 人,每人至少订种读物。
订《数学大世界》》的有多少人?3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?例2:城中小学选出10名学生参加区作文和数学比赛,结果每人都获奖。
其中有3人两项比赛都获奖,作文比赛获奖的有5 人,求数学比赛获奖的有多少人?练习:1、一个班有55 名学生,他们分别订阅了《小学生数学报》和《中国少年报》。
其中订阅《小学生数学报》的有32 人,两种报纸都订阅的有15 人,求订阅《中国少年报》的有多少人?2、四(1)班有40 个学生,有19 人参加了数学和科技两个兴趣小组。
其中有11人两个小组都没参加,有25人参加数学小组,求有多少人参加了科技小组?3、在四年级96 个学生中调查会下中国象棋和围棋的人数。
调查结果显示:有78人会下中国象棋,有24 人两样都会,还有12人两样都不会。
求会下围棋的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习:1、一个旅行社有36 人,其中会英语的有24 人,会法语的有18 人,两样都不会的有4 人。
容斥原理(一)【例题分析】例1. 有长8厘米,宽6厘米的长方形与边长5厘米的正方形。
如图放在桌面上,求这两个图形盖住桌面的面积?分析与解:阴影部分是直角三角形,是两个图形的重叠部分,它的面积是:(平方厘米)方法一:(平方厘米)方法二:(平方厘米)方法三:(平方厘米)答:盖住桌面的面积是67平方厘米。
例2. 六一班参加无线电小组和航模小组的共26人,其中参加无线电小组的有17人,参加航模小组的有14人,两组都参加的有多少人?分析与解:把17人和14人相加,是把两组都参加的人算了两次,所以减去总人数,就是两组都参加的人数(人)。
也可以这样解:(人)或(人)答:两组都参加的有5人。
例3. 六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?分析与解:先求出46人中会骑车或会游泳的有多少人,从中减去会骑车或会游泳的人数,剩下的就是既不会骑车也不会游泳的人数。
(人)(人)答:既不会骑车又不会游泳的有9人。
例4. 某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组有5人,同时参加音乐和手工两个小组有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:图中的5、6、7人都是两两重叠的部分,图中的3人是三个重叠的部分,要从三个组的总人数中减去重复多余的部分。
(人)答:这个年级参加课外小组的有60人。
例5. 某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。
短跑投掷跳远跑跳跑投跳投三项19 21 20 9 10 6 3分析与解:根据题意画出如下图要求全班有多少人,先要求出跑、跳、投至少有一项达到优秀的人数,加上三项都未达到优秀的,就是全班人数。
第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。
Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
第35周容斥问题专题简析:容斥问题涉及一个重要原理一一包含与排除原理,也叫容斥原理。
当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如右图所示),那么具有性质a或性质b的事物的个数是N a 十Nb- Nab。
例1:一个班有48人,班主任在班会上问“谁做完语文作业了?请举手!”有37人举手。
又问:“谁做完数学作业了?请举手!”有42人举手。
最后问“谁语文、数学作业都没有做完?“没有人举手。
求这个班语文、数学作业都完成的人数。
练习一:1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65 人,数学成绩优秀的有87 人。
语文、数学成绩都优秀的有多少人?2、四(1)班有54 人,订阅<小学生优秀作文》和(数学大世界)两种读物的有13 人,订《小学生优秀作文》的有45 人,每人至少订种读物。
订《数学大世界》》的有多少人?3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?例2:城中小学选出10名学生参加区作文和数学比赛,结果每人都获奖。
其中有3人两项比赛都获奖,作文比赛获奖的有5 人,求数学比赛获奖的有多少人?练习:1、一个班有55 名学生,他们分别订阅了《小学生数学报》和《中国少年报》。
其中订阅《小学生数学报》的有32 人,两种报纸都订阅的有15 人,求订阅《中国少年报》的有多少人?2、四(1)班有40 个学生,有19 人参加了数学和科技两个兴趣小组。
其中有11人两个小组都没参加,有25人参加数学小组,求有多少人参加了科技小组?3、在四年级96 个学生中调查会下中国象棋和围棋的人数。
调查结果显示:有78人会下中国象棋,有24 人两样都会,还有12人两样都不会。
求会下围棋的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习:1、一个旅行社有36 人,其中会英语的有24 人,会法语的有18 人,两样都不会的有4 人。
小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长 _____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分。
容斥原理:对n 个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如图),
那么具有性质a或性质b的事物的个数=Na+Nb-Nab。
练习1、1 四(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人。
两种作业都做完的有多少人?
练习1、2五(1)班有40名学生,其中25人参加数学小组,23人参加科技小组,有19人两组都参加了。
那么,有多少人两个小组都没有参加?
练习2、1某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?
练习2、2一个旅行社有员工36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人。
两样都会的有多少人?
练习3、1在1-200的全部自然数中,既不是4的倍数也不是5的倍数的数有多少个?
练习3、2在1-1000的全部自然数中,既不是5的倍数也不是7的倍数的数有多少个?
练习4、科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有114件不是一年级的,有96件不是二年级的,一、二年级参展的作品共32件。
其他年级参展的作品共有多少件?
1、光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法共有多少幅?
2、有40名运动员,其中25人会摔跤,有20人会击剑,有10人击剑摔跤都不会,问既会摔跤又会击剑的运动员有多少人?
3、一个班有学生42人,参加体育代表队的有30人,参加文艺代表队的有25人,并且每人都至少参加了一个队,这个班两队都参加的有多少人?
4、30名学生中,8人学法语,12人学西班牙语,3人既学法语又学西班牙语,问有多少名学生两种语言都不学?
5、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?
6、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?
7、在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?
思考题:
有30名运动员,其中18人会三级跳远,16人会撑杆跳高,10人三级跳远、撑杆跳高都不会。
既会三级跳远又会撑杆跳高的运动员有多少名?。