笔记本上电时序(X86平台)
- 格式:doc
- 大小:76.00 KB
- 文档页数:3
一、引言ATX3.0标准是一种电源管理规范,它规定了计算机的上电放电时序,以保证计算机硬件的正常运转和保护。
本文将详细介绍ATX3.0标准下的上电放电时序,以便读者更好地了解计算机硬件的工作原理。
二、ATX3.0标准概述1. ATX3.0标准是由英特尔公司制定的,它取代了旧版的ATX2.0标准,为计算机硬件的电源管理提供了更加严谨的规定。
2. ATX3.0标准规定了计算机电源的输出电压范围、稳定性要求、上电放电时序等重要参数。
3. 上电放电时序是指计算机电源上电和断电的时间顺序,它对于计算机硬件的正常运转和保护至关重要。
三、上电时序1. 上电时序是指计算机电源在接通电源后,各种电压输出的时间顺序。
2. 根据ATX3.0标准,上电时序应包括以下几个关键步骤:(1) 5VSB上电:在主电源接通后,计算机电源的5VSB线路应首先提供稳定的待机电压,以供主板和其他设备的待机模式使用。
(2) PW_ON信号响应:计算机主板上的PW_ON信号由主机电源按键触发,触发后,主板应向电源发送启动信号。
(3) 主电压输出:在接收到启动信号后,计算机电源应输出各种主要电压(如+12V、+5V等),以供主板和其他设备正常工作。
四、放电时序1. 放电时序是指计算机电源在断开电源后,各种电压输出的时间顺序。
2. 根据ATX3.0标准,放电时序应包括以下几个关键步骤:(1) 主电压输出关闭:在主电源断开后,计算机电源应先关闭各种主要电压的输出。
(2) 5VSB放电:在主电源断开后,计算机电源应在一定时间内将5VSB线路的电压降至安全范围内,以避免对主板和其他设备的损害。
(3) 所有输出关闭:在放电完毕后,计算机电源应确保所有电压输出均已关闭,以保证计算机设备的安全。
五、ATX3.0标准的改进1. 相较于旧版的ATX2.0标准,ATX3.0标准在上电放电时序方面做出了以下改进:(1) 5VSB线路的待机电压更加稳定,能够更好地支持待机模式。
新型笔记本上电时序3VPCU待机电压先供给EC,当EC有电压以后,外接的32.768KHZ晶振开始起振,【是3VPCU待机电压正常后,EC发出电压给晶振】,晶振起振后,给EC待机时提供一个时钟,复位是有一个电阻和一个充电电容延迟以后产生复位【LREST】,当EC的待机、时钟、复位满足以后,EC发出CS#片选信号选中BIOS,从BIOS芯片中读取程序,去配置EC中的GPIO(可编程引脚)引脚定义,当EC待机条件满足后,程序的代码也读取出来了,EC就可以正常上电工作了。
在EC上电之前,还有三个信号条件:A:EC第一个信号:LID—EC#这个信号是S3的休眠开关检测信号说明:LID—EC#在正常的情况下,是被上拉的一个信号,如果被强制拉低到一个低电位的话,机器是上不了电的,不能实现通电。
B:EC第二个信号:适配器检测信号(ACIN)说明:当适配器插入时,在ACIN处也是有一个电压值的,如果此电压值没有起来,EC就认为适配器没有检测到,那么也是上不了电的。
C:EC第三个信号:电池电量低的检测信号(BAT—LOW)说明:如果电池电量低,EC也会停止上电,此脚必须有一个高电平,上拉电压,才正常时序步骤:1:NBSWON#:开机触发信号,未按开机键之前,此信号有3VPCU上拉电压,按下电源键,此信号被拉至地,形成低电位有效触发至EC,NBSWON#是一个高—低—高的低电位有效触发信号2:当EC收到有效触发以后,EC就发出一个S5—ON高电位信号,S5—ON一出来就控制将3VPCU电压转换成3V—S5供至南桥:VCCSUS3.3(3.3V待机),将5VPCU电压转换成5V—S5供至南桥的V5REFSUS(5V待机),此时南桥有了待机电压3:(1):EC发出RSMRST#信号(从低到迟续高电位)至南桥中的RSMRST#脚位,其目的是:清零南桥里面的ACPI控制器的逻辑关系(2):EC收到NBSWON#后,延时发出DNBSWON#低电位有效触发至南桥中的PWRBIN#脚位,告知南桥用户已按下电源键4:当南桥供电、时钟、复位条件满足以后以及收到PWRBIN#有效触发后,依次发出高电平的SLP—S3#、SLP—S4#(或S5#)的信号,SLP—S4#更名为:SUSC#,SLP—S3#更名为:SUSB#信号发至EC5:EC收到这两个高电位信号以后,分别将:SUSC#转换成SUSON(SUSON是用于开启各种SUS电压),将SUSB#转换成MAINON(MAINON是用于开启各种MAIN电压或是正电压开启信号,比如:+3V、+5V),EC将SUSB#信号延时99ms后,发出VRON,用于开启CPU的VCORE电压6:在各路电压产生正常以后,各路电压的PWRGOOD信号经逻辑相与后产生HWPG信号供至EC,HWPG给到EC后,EC就发出PWROK至南桥里面的PWROK信号脚位上(PWROK代表所有系统电压都正常)备注:在广达笔记本中,只要其中任意一个PWRGD没有起来,HWPG就会被拉低,EC检查不到HWPG信号,就会停止发出MAINON和SUSON,故障表现为:掉电。
笔记本上电时序大解析我也发个时序。
呵呵是远程学员的一个作业题目。
发在这里大家一起看看。
填写一下顺序吧。
答对的有小赏哦时序图.JPG (50.12 KB, 下载次数: 42)我偿试填了一下,看一下,不对的地方请指正,好提高一下我这个时序,在此先谢谢了。
我来试着解答一下:1:未插电源,装入CMOS电池后,首先送出RTCRST#、VBAT给SB;同时晶振提供32.768KHZ给SB。
2:插入电源,IO检测电源是否发出5VSB,5VSB转换为3VSB同时提供给SB。
3:IO发出RSMRST#通知南桥5VSB准备好了。
4:按下开关后,IO收到PWSW#。
之后IO发出PWBTN#给SB。
SB收到此信号后,送出SLP_S3#給IO。
然后由IO发出PSON#接低ATX的绿线。
ATX电源工作,发出主供电。
5:在主供电正常后,ATX发出ATXPWROK给SB,通知南桥ATX工作正常。
同时也产生各路后续电压,如VTT,内存供电等。
6:当VTT送给CPU后,CPU发出VTT_PWGD给VRM。
当VRM收到这个信号后,根据CPU发出的VID组合发出VCORE供给CPU。
7:VCORE正常产生后,VRM发出VRM_PWGD给SB和时钟,时钟收到此信号后,开始工作,发出各路时钟信号。
8:SB收到VRM_PWGD和时钟信号后,发出CPU_PWGD给CPU,同时发出PLTRST#给NB,还发出PCIRST#给IO、BIOS及各个设备。
9:NB收到PLTRST#后,发出CPURST#给CPU。
10:CPU有了电压,时钟,复位,PWGD,便开始工作了学了四天,我也发一个。
10030523150a7851cea274df93.jpg (52.22 KB, 下载次数: 21)哪位高手能把这些信号从头到尾概述一还有图里蓝字和黑字代表什么意思了QQ截图未命名.png (78.28 KB, 下载次数: 4)华硕A8S的时序图来无聊来回答下楼主的问题。
当今流行笔记本主板intel架构电源时序讲解1.RTC电源:用以保持机器内部时钟的运转和保证CMOS配制信息在断电的情况下不丢失;2.在你插上电池或者电源适配器,但还没按power键的时候(S5),机器内部的开启的电称为ALWAYS电,主要用以保证EC的正常运行;3.你开机以后,所有的电力都开启,这时候,我们称为MAIN电(S0),以供整机的运行;4.在你进待机的时候(S3),机器内部的电成为SUS电,主要是DDR的电力供应,以保证RAM 内部的资料不丢失;5.而休眠(S4)和关机(S5)的电是一样的,都是Always电。
上文中括号内的是表示计算机的状态(S0-开机,S3-待机,S4-休眠,S5-关机)。
逻辑启动时序:1. 在插上电池或者电源的时候,等待用户按下Power键的时候机器内部的单片机EC就Reset 并开始工作,。
在此期间的时序是:ALWAYS电开启以后,EC Reset并开始运行,随后发给南桥一个称为`RSMRST#'的信号。
这时候南桥的部分功能开始初始化并等待开机信号。
这里要注意,这时候的南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#(PWR_SWIN2#3)信号。
2. 用户按下Power键的时候,EC检测到一个电平变化(一般时序是:高-低-高),然后发送一个开机信号(PWRBTN#) 南桥,南桥收到PWRBTN#信号后- 拉高SLP_S5#,SLP_S4#,SLP_S3#信号,- 开启了所有的外围电压,S电压+VCCP PWR_GOOD3 等,并发送PM PWROK(表明外围电源正常开启)信号。
WR-GOOD3 和PM_PMROK 发送给VCC_CORE芯片,VCC_CORE产生后- 发出VR_PWRGD_CK505信号送给CLK,CLK开始工作。
- 同时VR_PWRGD会发送给南桥告知VCC_CORE电源已开启OK。
- 随后南桥发出PCI_RST#和PLT_RST#总线设备初始化,随后南桥发出- H_PWRGD给CPU (通知CPU的核心电压及CLK工作稳定),- 北桥产生H—CPURST#送给CPU-- CPU 被RESET.关于M/B开机无显DP00的量测方法:1. 电源部分:M/B所有电源是否OK,南北桥及CPU的工作电压及参考电压是否OK。
基本所有的THINKPAD系列采用的电压都是差不多的架构,都是由M电压、B电压、A电压组成的。
M电压是通电后(只插电源不按开机键)产生的电压,也是各个后续电压的载体或者控制电压。
分别有VCC3M、VCC5M、VCC1R5M、VCC2R5M组成。
B电压是开机后的电压,支撑这主板上各个主要功能的实现。
分别有VCC3B、VCC5B、VCC0R9B、VCC1R05B、VCC1R5B组成。
A电压是休眠后使用的电压,他的作用就是保证休眠后,内存上保存的数据不丢失。
就只有一个VCC1R8A。
先看下X60的所有电压时序关系,通过这个图我们可以看出,电压都是有一定的先后顺序的。
先产生哪个信号后产生哪个信号,都是由两个电源管理芯片进行管理。
其实,这种所谓的时序管理,采用了两种办法,一个是采用时延电路,另一个就是用A芯片产生的ON电压(开启电压)去开启B芯片的DRV电压(驱动电压)。
下面是X60上所有的电压表格内数字1代表的就是这个时间内产生的电压,这些都是同步产生的,基本没有先后的顺序。
但并不代表是完全同一时间同时产生第一步产生的电压有DOCK_PWR19_F、VREGIN19和VCC3SW。
DOCK_PWR19_F(19V),由DOCK_PWR19(就是电源适配器输出的19V电压)通过F10这保险。
VREGIN19(19V),由三组供电电源产生,分别是电源适配器、主电池、副电池通过各自的保险丝产生。
VCC3SW(3.3V),由U74(BD4175)满足接收到VREGIN19电压,做为U74的工作电压,以及U74的RC自振电路产生的工作频率,就会产生VC3SW。
第二步产生的电压有:CV19、VINT19、EXTPWR_PMH。
CV19(19V),由DOCK_PWR19_F通过U12产生。
U12的控制极由DISCHARGE (电池放电信号)和-PWRSHUTDOWN(温控断电保护信号)“相与”后产生。
当主板温度发生变化时,电源自动切断保护了,-PWRSHUTDOWN,由U74(BD4175)在产生了VCC3SW后,通过11个热敏电阻的侦测反馈电压,控制这个信号的高低。
三星笔记本电脑开机时序简述
1:待机电压
当插上电源或者电池后,由相应电路产生P12.0V_ALW P5.0V_ALW P3.3V_MICOM电压。
2:开机电压
当按下开关时,KBC(MICOM)输出KBC3_SUSPWR信号到相应电路输出P3.3V_AUX P5.0V_AUX P1.8V_AUX MEM1_VREF P1.2V_LAN P1.8V/P2.5V_LAN 后,KBC输出KBC3_RSMRST#到南桥,南桥再输出CHP3_SLPS5给KBC。
3:运行电压
KBC再输出KBC3_PWRON信号到相应电路产生P1.5V P5.0V P1.25V P1.05V P3.3V P1.8V P1.2V P0.9V 。
4:CPU核心电压
由ISL6227产生VCCP3_PWRGD信号,由KBC产生KBC3_VRON 信号到CPU VRM(电压调节模块),CPU VRM 再输出VCC_CORE信号到CPU。
5:CPU复位
CPU VRM输出VRM3_CPU_PWRGD信号到南桥和KBC,南桥再输出CLK3_PWRGD信号,令时钟工作,到KBC后延时110毫秒。
KBC再输出KBC3_PWRGD到南桥和北桥,南桥输出CPU1_PWRGDCPU到CPU,输出PLT3_RST PCI3_RST信号。
PLT3_RST 分别到北桥显卡PCIE,PCI3_RST到PCI设备,最后北
桥发出CPU1_CPURST到CPU,这时CPU开始执行BIOS自检命令。
HP笔记本上电时序主板上电维修:1,上电时序当我们插上Adapter19VIN时,电源流入就有一个5VPCU,3VPCU电压,它是由PU10(MAX1999)自动产生,此时机器处于待机状态。
当我们按下Power Button时,NBSWON# 瞬间有一个低电平,这低电平送给97551,97551收到这信号时,产生信号DNBSWON#,DNBSWON发给南桥,同时发出S5-ON(MAINON)到1845产生1.5V_S5。
S5-ON输入PQ128经过PQ132产生S5-OND。
S5-OND通过PQ127和PQ141分别产生5V_S5和3V_S5。
3V_S5,5V_S5,1.5V_S5此时供电给南桥。
南桥收到DNBSWON 低电平时,便发生SUSB#,SUSC# 两个高电平送给以97551,97551收到SUSB#,SUSC# 后便相继产生了SUSON,MAINON#,VRON。
SUSON信号转换成SUSD信号送PQ143,PQ145管便产生3VSUS,5VSUS,及SUSON送到MAX1845 产生2.5VSUS。
MAINON#经PU7产生SMDDR —VTERM。
同时经PQ119和PQ125转换成MAIND送PQ143,PQ145,PQ148,PQ153产生+3V, +5V,+2.5V,+ 1.5V电压。
VRON送给PU3(MAX1907),PU5(1992E)产生VCC-CORE 和VCCP电压。
PU6,PU4产生HWPG信号给97551,此时PU3,PU5也各产生一个HWPG信号反馈97551。
此时整个M/B的主电压都已OK各组电压反馈回来的HWPG信号相汇合,为一个HWPG相当于“与”的关系如其中有任何一组反馈的HWPG的为低电平此时97551会发生POWER OK 指令,关掉开启的电压,如OK则HWPG恒为高电平.当97551收到HWPG后产生PWROK信号送给SB南桥,后由SB南桥产生PCI RST#经U42产生PCIRST#传给北桥。
用户名密码注册xiaoZ青春有梦,勇敢去追主页博客相册|个人档案 |好友查看文章笔记本上电时序(X86平台)2010-09-08 17:39我们假设没有任何的电力设备在供电(没电池和电源),这时候,机器内部只有RTC电路在运作,内部时间的运行和CMOS信息。
在插上电池或者电源的时候,机器内部的单片机EC就Reset并开始电开启以后,EC Reset并开始运行,随后发给南桥一个称为‘RSMRST#’的信号。
这时候南桥的部南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#信号。
在用户按下Power键的时候,EC(开机芯片)检测到一个电平变化(一般时序是:高-低-高),PWRBTN#信号后依次拉高SLP_S5#,SLP_S4#,SLP_S3#信号(他们的作用参看上页的图),开启了所PWROK信号,这信号表明外围电源正常开启。
PM PWROK将作为一个使能信号发送到CPU外围VCCP的电压Generator,并开启VCCP。
在此之后,的核心电压)。
至此,整机的电压已经全部开启。
在用VR_PWRGD_ICH这个信号通知南桥CORE VR成功开启后,南桥会发出PCI RST#信号到PCI 发出H_PWRGD来通知CPU它的核心电压已经成功开启。
然后北桥发H_CPURST#信号给CPU,CPU被在用户需要进入待机模式(S3)的时候,系统的ACPI和windows同时运作,拉低SLP_S3#,并保入待机模式而在需要进入休眠或者关机模式时,同时拉低SLP_S3#、SLP_S4#和SLP_S5#,关闭除了RTC以BIOS的共同协作,对硬件工程师来说,只需要保证在特定的状态保证特定的电压供给即可。
当机器要要从S0进入S5,即关机的时候,也会有一定的时序进行,基本上就是前面时序的逆下面是一张典型的主板上电的时序图,参考下。
论 (0)最近读者:网友评论:发表评论:内容:©2010 Baidu。
用户名密码
注册
xiaoZ
青春有梦,勇敢去追
主页博客相册|个人档案 |好友
查看文章
笔记本上电时序(X86平台)
2010-09-08 17:39
我们假设没有任何的电力设备在供电(没电池和电源),这时候,机器内部只有RTC电路在运作,内部时间的运行和CMOS信息。
在插上电池或者电源的时候,机器内部的单片机EC就Reset并开始电开启以后,EC Reset并开始运行,随后发给南桥一个称为‘RSMRST#’的信号。
这时候南桥的部南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#信号。
在用户按下Power键的时候,EC(开机芯片)检测到一个电平变化(一般时序是:高-低-高),PWRBTN#信号后依次拉高SLP_S5#,SLP_S4#,SLP_S3#信号(他们的作用参看上页的图),开启了所PWROK信号,这信号表明外围电源正常开启。
PM PWROK将作为一个使能信号发送到CPU外围VCCP的电压Generator,并开启VCCP。
在此之后,的核心电压)。
至此,整机的电压已经全部开启。
在用VR_PWRGD_ICH这个信号通知南桥CORE VR成功开启后,南桥会发出PCI RST#信号到PCI 发出H_PWRGD来通知CPU它的核心电压已经成功开启。
然后北桥发H_CPURST#信号给CPU,CPU被在用户需要进入待机模式(S3)的时候,系统的ACPI和windows同时运作,拉低SLP_S3#,并保入待机模式
而在需要进入休眠或者关机模式时,同时拉低SLP_S3#、SLP_S4#和SLP_S5#,关闭除了RTC以BIOS的共同协作,对硬件工程师来说,只需要保证在特定的状态保证特定的电压供给即可。
当机器要要从S0进入S5,即关机的时候,也会有一定的时序进行,基本上就是前面时序的逆下面是一张典型的主板上电的时序图,参考下。
论 (0)
最近读者:
网友评论:
发表评论:
内容:
©2010 Baidu。