25Hz相敏轨道电路预叠加ZPW 2000A站内电码化资料
- 格式:doc
- 大小:44.03 KB
- 文档页数:6
25Hz 相敏轨道电路预叠加ZPW -2000电码化一. 电码化轨道电路联调1. 25Hz 相敏轨道电路⑴ 送电端采用BG 2-130/25:I 14III 3 图1.⑵ 受电端采用BG 2-130/25:I 14 III 2 3图2.⑶ 室外送、受电端轨道变压器变比按⑴、⑵固定,调整室内变压器BMT-25。
送电端电阻安维规要求使用。
⑷ HF3-25型25 Hz防护盒端子使用:1、3号端子分别接至JRJC2-70/240型二元二位轨道继电器的轨道线圈两端。
各端子的使用和连接按《25 Hz防护盒端子使用表》进行。
HF3-25型25 Hz防护盒端子使用表⑸其他轨道电路区段要求与原25Hz相敏轨道电路要求相同。
2. 轨道电路的测试⑴失调角β:0º~35°。
⑵轨道继电器电压:15 V~18 V有效值。
U GJ(有效)= U GJ(测试)×cosβ3. 25Hz相敏轨道电路失调角允许范围说明:⑴允许失调角是指U G与U J之间的相位差;⑵允许范围是指按部标准图(图号通号(99)0047)图册中U jmin值。
因U jmin为参考值,故允许失调角也为参考值。
实际值应根据现场实际情况进行确定,但原则上不得高于给定值。
4. 25Hz相敏轨道电路预叠加ZPW-2000电码化⑴入口电流:1700 Hz、2000 Hz、2300 Hz不小于500 mA;2600 Hz不小于450 mA。
⑵出口电流:不大于7 A。
⑶调整R1,使发送盒供出电流小于等于600 mA。
图3.① MFT1-U匹配防雷调整组合两个100 Ω调整电阻R1出厂时一般调整在中间位置,现场一般不需调整,当发现ZPW-2000电码化发送盒输出电流超出规定值时,可适当调整,使其满足要求。
② FT1-U的使用,出厂时设置在100 V端子上,当入口电流过大或过小时,调整FT1-U的输出电压端子,使入口电流满足要求。
③室内MGL-UF、MGL-UR送、受电端室内隔离组合300 Ω调整电阻R2出厂时一般调整在150 Ω,现场根据出、入口电流的大小进行调整到满足要求为止。
25Hz 相敏轨道电路预叠加ZPW -2000电码化一. 电码化轨道电路联调1. 25Hz 相敏轨道电路⑴ 送电端采用BG 2-130/25:I 14III 3 图1.⑵ 受电端采用BG 2-130/25:I 14 III 2 3图2.⑶ 室外送、受电端轨道变压器变比按⑴、⑵固定,调整室内变压器BMT-25。
送电端电阻安维规要求使用。
⑷ HF3-25型25 Hz防护盒端子使用:1、3号端子分别接至JRJC2-70/240型二元二位轨道继电器的轨道线圈两端。
各端子的使用和连接按《25 Hz防护盒端子使用表》进行。
HF3-25型25 Hz防护盒端子使用表⑸其他轨道电路区段要求与原25Hz相敏轨道电路要求相同。
2. 轨道电路的测试⑴失调角β:0º~35°。
⑵轨道继电器电压:15 V~18 V有效值。
U GJ(有效)= U GJ(测试)×cosβ3. 25Hz相敏轨道电路失调角允许范围说明:⑴允许失调角是指U G与U J之间的相位差;⑵允许范围是指按部标准图(图号通号(99)0047)图册中U jmin值。
因U jmin为参考值,故允许失调角也为参考值。
实际值应根据现场实际情况进行确定,但原则上不得高于给定值。
4. 25Hz相敏轨道电路预叠加ZPW-2000电码化⑴入口电流:1700 Hz、2000 Hz、2300 Hz不小于500 mA;2600 Hz不小于450 mA。
⑵出口电流:不大于7 A。
⑶调整R1,使发送盒供出电流小于等于600 mA。
图3.① MFT1-U匹配防雷调整组合两个100 Ω调整电阻R1出厂时一般调整在中间位置,现场一般不需调整,当发现ZPW-2000电码化发送盒输出电流超出规定值时,可适当调整,使其满足要求。
② FT1-U的使用,出厂时设置在100 V端子上,当入口电流过大或过小时,调整FT1-U的输出电压端子,使入口电流满足要求。
③室内MGL-UF、MGL-UR送、受电端室内隔离组合300 Ω调整电阻R2出厂时一般调整在150 Ω,现场根据出、入口电流的大小进行调整到满足要求为止。
型25H Z轨道电路及Z P W-2000A移频轨道电路测试(总18页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第三章轨道电路第一节97型25HZ轨道电路一、主要技术指标:1.调整状态时,轨道继电器轨道线圈上的有效电压应≥18V,轨道线圈电压相位角滞后于局部电压相位角应在90°。
JXW-25微电子相敏轨道电路接收器接收端有效电压应≥18V,允许失调角β应在±30°以内,直流电压输出应为20-30V。
2.用Ω标准分路电阻线在轨道电路送、受端轨面上任一处分路时,轨道继电器(含一送多受的其中一个分支的轨道继电器)轨道线圈电压应≤,其前接点应断开。
JXW-25微电子相敏轨道电路接收器接收端电压应≤10V,直流电压输出应为0V,应变时间小于,其执行继电器可靠落下。
3.轨道电路送、受电端扼流变压器至钢轨应采用等阻线,接线电阻不大于Ω。
4.轨道电路送、受电端轨道变压器至扼流变压器的接线电阻不大于Ω。
5.轨道电路电源屏至送电端轨道变压器一次侧的电缆允许压降为30V。
轨道继电器至受电端轨道变压器间的电缆电阻不大于150Ω。
6.轨道电路送、受电端的电阻器Rx、Rs,其阻值应按维规25Hz轨电调整表中给出数值的规定,予以固定,不得调小。
电源屏输出轨道电压220±,局部电压110±,局部电压相位角恒超前轨道电压相位角90°。
输出JXW-25直流电压应为24± V。
9. 相邻轨道区段应满足25Hz相敏轨道电路极性交叉要求。
三、测试方法1、电源电压测试:25Hz电源屏轨道电压和局部电压及相位角,可用选频表测得; 轨道电压为220V+,局部电压为110V+,对于JRJC1-70/240型继电器局部电源电压相位超前于轨道电压相位87°±8°。
对于JRJC-66/345型继电器局部电源电压相位超前于轨道电压相位88°±8°。
25 Hz相敏轨道电路与ZPW-2000A结合处的逻辑检查故障分析贾 鸿,马 樱,张 祺(卡斯柯信号有限公司,北京 100070)摘要:25 H z相敏轨道电路与Z P W-2000A轨道电路特性不同,但在自动闭塞及站内电码化改造过程中两种制式轨道电路常结合应用。
不同的特性会导致结合处的逻辑检查失效。
针对场联进路无法正常解锁、三接近闭塞分区遗留失去分路故障进行分析,介绍故障发生的场景及原因,并讨论计算机联锁、列控中心、区间综合监控系统以及继电逻辑检查电路对于此类故障的解决方案,为后续工程设计及故障处理提供参考。
关键词:25 Hz相敏轨道电路;ZPW-2000A;结合应用;逻辑检查;故障分析中图分类号:U284.2 文献标志码:A 文章编号:1673-4440(2024)03-0101-05Fault Analysis of Logic Check at Junction of 25 Hz Phase Sensitive Track Circuit and ZPW-2000A Track CircuitJia Hong, Ma Ying, Zhang Qi(CASCO Signal Ltd., Beijing 100070, China)Abstract: The 25 Hz phase sensitive track circuit has diff erent characteristics from ZPW-2000A track circuit. However, during the retrofitting of automatic block and station coding systems, these two track circuits are often used together. The diff erent characteristics of these two track circuits may lead to the failure of logic check at their junction. This paper analyzes the failure of normal release of the yard connection route and the loss of shunting kept in the third approach block section, and introduces the scenario and causes of these faults. It also discusses the solutions of the interlocking system, train control center system, integrated section monitoring system and relay logic check circuit for these failures, which provides reference for engineering design and fault handling in the future.Keywords: 25 Hz phase sensitive track circuit; ZPW-2000A track circuit; combined application; logic check; fault analysisDOI: 10.3969/j.issn.1673-4440.2024.03.019收稿日期:2022-10-09;修回日期:2024-01-31基金项目:卡斯柯信号有限公司科研项目(RB_23121022)第一作者:贾鸿(1990-),男,工程师,硕士,主要研究方向:铁路信号,邮箱:*****************.cn。
25Hz相敏轨道电路预叠加ZPW-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。
本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。
关键词:电码化、轨道电路、预叠加在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。
随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。
为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。
在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。
而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。
机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。
为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。
1 相关术语电码化:由轨道电路转发或叠加机车信号信息技术的总称。
车站股道电码化:车站内到发线的股道及正线实施的电码化。
车站接发车进路电码化:车站内按列车进路实施的电码化。
预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。
2 实施车站闭环电码化的范围列车占用的股道区段;经道岔直向的接车进路,为该进路中的所有区段;半自动闭塞区段,包括进站信号机的接近区段;自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。
3 电码化主要设备(1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。
(2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。
(3)机车信号信息的定义L3 准许列车按规定速度运行,表示运行前方5个及以上闭塞分区空闲。
L2 准许列车按规定速度运行,表示运行前方4个及以上闭塞分区空闲。
L 准许列车按规定速度运行。
LU 准许列车按规定速度注意运行。
LU2要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色灯光。
U 要求列车减速到规定的速度等级越过接近的地面信号机。
U2S要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色闪光和一个黄色灯光。
U2 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示两个黄色灯光。
U3 要求列车减速到规定的速度等级越过接近的地面信号机,表示接近的地面信号机显示一个黄色灯光,并预告次一架信号机为进站或出站信号机且显示一个红色灯光。
UUS 要求列车限速运行,表示列车接近的地面信号机开放经18号及以上道岔侧向位置进路,且次一架信号机开放经道岔的直向或18号及以上道岔侧向进路;或表示列车接近设有分歧道岔线路所的地面信号机开放经18号及以上道岔侧向位置进路。
UU 要求列车限速运行,表示列车接近的地面信号机开放道岔侧向位置的进路。
HB 表示列车接近的进站或接车进路信号机开放引导信号或通过信号机显示容许信号。
HU 要求及时采取停车措施。
H 要求列车立即采取紧急停车措施。
(4)ZPW-2000A闭环电码化低频信息分配及机车信号显示信息名称低频频率Hz机车信号显示10.3 L 绿L3码12.5 L L2码绿11.4 L L码绿13.6 LU 绿黄LU码15.8 U 黄码LU216.9 U 码黄U20.2 U2S 黄码U2S 2闪14.7 U2 码U2 黄222.4黄码U3 U机车信号显示低频频率Hz信息名称19.1 双黄闪UUS 码UUS18 UU码双黄UU24.6 HB码红黄闪HUS26.8 红黄HU码HU29 红码H 25.7载频切换27.9闭环检测无H无B)载频频谱的排列(5。
为防止进、出站处钢轨①下行正线,咽喉区正向接车、发车进路的载频为1700-2载频交错。
正线股道的载频、-2载频可与区间ZPW-2000轨道电路-1绝缘破损,-1、-2 1700-2。
为。
为防止进、出站处钢轨②上行正线,咽喉区正向接车、发车进路的载频为2000-2载频交错。
正线股道的载频、-2ZPW-2000轨道电路-1绝缘破损,-1、-2载频可与区间。
为2000-2 ③侧线股道交错排列。
2300-1Hz、1700-1Hz下行正方向,各股道按下行方向载频交错排列。
2600-1Hz、2000-1Hz上行正方向,各股道按上行方向载频选择载频配置。
或2300-1 Hz/2600-1 Hz④到发线股道以1700-1 Hz/2000-1 Hz )补偿电容的设置(6 时,应设置补偿电容①当电码化区段超过300m F;2000-2载频时,补偿电容采用80μ发送1700-1、1700-2、2000-1、。
60μF2300-2、2600-1、2600-2载频时,补偿电容采用、发送2300-1 ②设置方法补偿电容的安装方法,按照等间距设置补偿电容的方法。
其具体方法如下。
)(轨道电路长度L??)电容个数?( 等间距:=N+A Σ数量:N:百米位数0 时为:个位、拾位数为A010 个位、拾位数不为时为Δ表示等间距长度;轨道电路两端与第一个电容距离为Δ/2,安装允许误差±0.5m。
4 电化区段25Hz相敏轨道电路预叠加ZPW-2000A站内电码化原理25Hz相敏轨道电路主要用于电化区段,二线制预叠加ZPW-2000A 的原理如图1所示:BB22RWGL-WGL-BB22RR室11NFNF室AAA1A1AA NGL-NGL-A1A1A1AAA1QF预发码方向电BM HF GFT1-QF25H25H220ZPW-110V 图1 25HZ预叠加ZPW-2000A电码化原理图(1)电码化发送器ZWP·F 型:产生18种低频信号8种载频(上下行各四种)的高精度、高稳定的移频信号;产生足够功率的输出信号;调整轨道电路;对移频信号特征的自检测,故障时给出报警及N+1冗余运用的转换条件。
(2)扼流变压器BE1-800/25;(3)轨道变压器BG1-130/25;(4)WGL-U:室外隔离盒适用于适用于非电气化区段480轨道电路叠加和预叠加ZPW-2000A移频站内电码化区段。
(5)NGL-U:室内隔离盒适用于站内交流连续式480轨道电路预叠加和叠加ZPW-2000A移频信号室内器材。
可适用移频1700、2000、2300、2600Hz。
不用跨线,送受电端通用。
(6)NFL:NFL匹配防雷单元分为OBO-385和DGT-385两种,根据需要进行安装,如安装OBO-385为NFL1匹配防雷单元,若安装DGT-385则为NFL2匹配防雷单元。
(7)信号电阻R0、RS为R1-4.4/440;(8)防护盒HF3-25,在电路中可起到对25Hz信号频率的无功分量进行补偿,减少对25Hz信号在传输中的衰耗和相移等作用。
(9)GJ采用JRJC1-70/240型二元二位继电器,是一种交流感应式继电器,具有可靠的频率选择性和相位选择性。
(10)BMT可在室内调整轨道电路,进行电压输出、输入及电压调整。
5 接发车进路预叠加电码化电路原理图2所示为站内一正线区段预叠加电码化简化电路。
文中举例站场为双线双方向运行的四显示自动闭塞区段。
每一正线使用两个发送器。
正线正向接车进路设一发送器,正向发车进路和反向接车进路合用一个发送器。
下行正线使用1700Hz,上行正线使用2000Hz,进路内共设有21DG、15DG、1/15WG、1DG、IIAG共5段轨道电路。
D1D9D13GJZ22GJZ22GJZ22GJZ22GJZ22GJF22GJF22GJF22GJF22GJF22SFMA1/15W21D10GC8GCSFM6GCSFM1D15D9GCSFM7GCSFFBSFSFFBJSFMFSFBJⅡFT1-U+1FS图2 站内预叠加ZPW-2000A 电码化电路简图5.1 传输继电器和发码继电器电路分析21DGGJF1215DGGJF1GJF1ⅡSFMJ2KF761-15WGSFMJSFMJS1LQJGCJKFKZ412711DGCRGJF1+-122AGⅡGJF12图3 SFMJ继电器1-15WG15DGⅡG21DG1DGⅡAGSFMJGJF1GJF1GJF1GJF1GJF1GJF1KZ图4 CJ电路图图3、图4所示为SFMJ 和CJ 电路。
当第一离去区段空闲时(S1LQJ ↑),建立上行通过发车进路,即上行正线通过继电器SIIZTJ↑,SII 信号机开放,SIILXJ ↑,接通上行发车发码继电器SFMJ 的励磁电路,SFMJ 励磁吸起。
随着列车压入21DG、15DG、1/15WG、1DG、IIAG分别使得21DGJ,15DGJ、1/15DGJ、1DGJ和IIAGJ 落下,接通SFMJ 的自闭电路。
直至列车出站,占用第一离去区段,S1LQJ↓,断开电路,使得SFMJ↓。
由此可见,SFMJ 从信号开放到列车占用第一离去区段前一直保持吸起,接通发码电路。
在每个轨道区段都设有一个传输继电器CJ 。
SFMJ 吸起后,列车占用IIG,IIGJ ↓,接通21DG 区段的传输继电器6GCJ的1-2 线圈励磁电路,使其吸起。
占用本区段时,21DGJ↓,断开6GCJ 的1-2线圈励磁电路,但接通了3-4 线圈励磁电路。
直至占用下一区段15DG区段,15DGJ↓时,才切断6GCJ励磁电路,使之落下。
7GCJ、8GCJ、9GCJ、10GCJ的动作过程同6GCJ,都是在列车占用前一区段和本区段时吸起,占用下一区段时落下。
5.2 预叠加发码原理如图2 所示,双功出发送盘的II、Ⅲ两路输出经防雷匹配单元分别与相邻轨道区段的CJ相连,即II路输出连21DG、1/15WG、IIAG 区段的CJ,Ⅲ路输出则连15DG和1DG区段的CJ。
列车占用II G 区段时,IIGJ↓,传输继电器电路中的6GCJ↑,双功出发送盘II路中的移频信息叠加进21DG 区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。
当列车压入21DG 区段时,21DGJ↓,6GCJ通过自闭电路保持吸起,发送的II路输出继续向21DG区段轨道传递机车信号信息。
同时7GCJ↑,双功出发送盘Ⅲ路的移频信息叠加进15DG 区段的轨道电路信息中,使列车运行在21DG区段时,15DG区段已预先发码。
同样,列车进入15DG 区段,15DGJ↓,7GCJ 通过自闭电路保持吸起,发送的Ⅲ路输出继续向15DG区段轨道传递机车信号信息。