电路基础含有耦合电感的电路分析
- 格式:ppt
- 大小:1.43 MB
- 文档页数:8
电路实验报告耦合电感
实验名称:耦合电感实验
实验目的:通过耦合电感实验,掌握电感的耦合作用原理,了解耦合电感在电路中的应用。
实验仪器:耦合电感、示波器、信号发生器、电阻、电源等。
实验原理:耦合电感是指两个或多个电感之间通过磁场相互耦合的现象。
在电路中,耦合电感可以用于实现信号传输、滤波、共振等功能。
当两个电感耦合在一起时,它们之间会产生一定的磁场耦合,从而影响彼此的电流和电压。
实验步骤:
1. 搭建电路:将示波器、信号发生器、电阻、电源和耦合电感连接在一起,按照实验指导书上的电路图进行搭建。
2. 调节参数:调节信号发生器的频率和幅度,观察示波器上的波形变化。
3. 测量数据:记录不同频率下示波器上的波形,测量电压和电流的数值。
4. 分析结果:根据实验数据分析耦合电感在不同频率下的特性,如共振频率、阻抗等。
实验结果:通过实验可以观察到在一定频率下,耦合电感会产生共振现象,电路中的电流和电压会发生明显变化。
同时,通过测量数据可以得到耦合电感在不同频率下的阻抗曲线,进一步了解其在电路中的应用。
实验结论:耦合电感在电路中起着重要作用,可以用于实现信号传输、滤波、共振等功能。
通过本次实验,我们对耦合电感的耦合作用原理和在电路中的应用有了更深入的了解。
实验总结:本次实验通过实际操作,让我们更加直观地了解了耦合电感的特性
和应用。
同时,也提醒我们在实际电路设计中要充分考虑耦合电感的影响,合理选择参数,以保证电路的稳定性和性能。
希望通过这次实验,能够对同学们的电路理论知识有所帮助。
第10章 含有耦合电感的电路(小结)1、 耦合电感的概念理解耦合电感是线性电路中一种重要的多端元件。
分析含有耦合电感元件的电路问题,重点是掌握这类多端元件的特性,即耦合电感的电压不仅与本电感的电流有关,还与其它耦合电感的电流有关,这种情况类似于含有电流控制电压源的电路。
2、 含有耦合电感电路的分析分析含有耦合电感的电路一般采用的方法有列方程分析和应用等效电路分析两类。
考虑到耦合电感的特性,在分析中要注意以下特殊性:(1) 耦合电感上的电压、电流关系式的形式与其同名端位置有关,与其上电压、电流参考方向有关。
认识到这一点是正确列写方程及正确进行去耦等效的关键。
(2) 由于耦合电感上的电压是自感电压和互感电压之和,因此列方程分析这类电路时,如不采用去耦等效,则多采用网孔法回路法,不宜直接应用结点电压法。
(3) 应用戴维宁定理(或诺顿定理)分析时,等效内阻抗应按含受探源电路的内阻抗求解法。
但当负载与有源两端网络内部有耦合电感存在时,戴维宁定理(或诺顿定理)不便使用。
3、 理想变压器的三个理想化条件理想变压器是在耦合电感元件基础上加进3个理想化条件而抽象出的一类多端元件。
这3个理想化条件是:(1)全耦合,即耦合系数k=1;(2)参数无穷大,即L1,L2,M →∞,但满足L1/L2=常数;(3)无损耗。
4、 理想变压器的主要性能在满足上述三个理想化条件下,具有如下性能:(1) 变电压。
即元件的初、次级电压满足代数关系22211nu u N N u ±=±=(n 为初次级线圈匝数比)。
(2) 变电流。
即元件的初、次级电流满足代数关系211i n i ±=。
(3) 变阻抗。
即由理想变压器初级端看进去的输入阻抗为L in Z n Z 2=。
(4) 理想变压器在任何时刻吸收的功率为零,是不储能、不耗能、只起能量传输作用的无记忆元件。
5、 理想变压器在应用上述性能时需注意以下事项:(1) 理想变压器的变压关系式u 1、u 2的参考极性及同名端位置有关。
§10.1 互感耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。
1. 互感两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流i 2 时,不仅在线圈2中产生磁通f 22,同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。
定义互磁链:图 10.1ψ12 = N 1φ12 ψ21 = N 2φ21当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:互感磁通链:上式中 M 12 和 M 21 称为互感系数,单位为(H )。
当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:需要指出的是:1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12 =M21 =M2)自感系数L 总为正值,互感系数 M 值有正有负。
正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。
2. 耦合因数工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义一般有:当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。
耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。
3. 耦合电感上的电压、电流关系当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。
根据电磁感应定律和楞次定律得每个线圈两端的电压为:即线圈两端的电压均包含自感电压和互感电压。
在正弦交流电路中,其相量形式的方程为注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。