振动和波动计算题及答案
- 格式:doc
- 大小:2.46 MB
- 文档页数:19
06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。
频率、周期和初相。
A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。
设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。
振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( ) (A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
医用物理学题库(2023秋季学期)第一部分振动与波动一、选择题1.弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若0t =时,振子在负的最大位移处,则初相为(A)0.(B)π.(C)/2π.(D)-/2π.2.一质量为m 的物体和劲度系数为k 的轻弹簧组成的振动系统,若以物体通过-1/2振幅且向负方向运动为计时时刻,该系统的振动方程为(A)2)3x A π=+.(B)1)3x A π=+.(C)1)3x A π=+.(D)2)3x A π=+.3.图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A)32π.(B)π.(C)12π.(D)0.4.0t =时,振子在位移为/2A 处,且向负方向运动,则初相的旋转矢量为5.一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为-2A ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为6.一物体作简谐振动,振动方程为cos(4x A t πω=+.在/4t T =(T 为周期)时刻,物体的加速度为(A)222A ω-.(B)222A ω.(C)232A ω-.(D)232A ω.7.一物体作简谐振动,振动方程为1cos()4x A t ωπ=+.在/2t T =(T 为周期)时刻,物体的加速度为(A)222A ω-.(B)222A ω.(C)232A ω-.(D)232A ω.8.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程为(A)222cos[]33x t ππ=-.(B)222cos[]33x t ππ=+.(C)422cos[]33x t ππ=-.(D)422cos[]33x t ππ=+.9.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A)4T .(B)2T .(C)T .(D)2T .10.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A)14.(B)12.(C)12.(D)34.11.一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A)4f .(B)2f .(C)f .(D)2f .12.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅为2A ,则这两个简谐运动的相位差为(A)3π.(B)2π.(C)π.(D)2π13.右图中所画的是两个简谐振动的振动曲线.这两个简谐振动的相位相差为(A)3π.(B)2π.(C)π.(D)014.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为(A)60 .(B)90 .(C)120 .(D)180 .15.两个同周期简谐振动曲线如图所示.1x 的相位比2x 的相位(A)落后2π.(B)超前2π.(C)落后π.(D)超前π.16.若一平面简谐波的表达式为)cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A)波速为C ..(B)周期为1/B .(C)波长为2/C π.(D)角频率为2/B π.17.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻(A)A 点相位为π.(B)B 点静止不动.(C)C 点相位为3/2π.(D)D 点向上运动.18.在简谐波传播过程中,沿传播方向相距为12λ(λ为波长)的两点的振动速度必定(A)大小相同,而方向相反.(B)大小和方向均相同..(C)大小不同,方向相同.(D)大小不同,而方向相反.19.以下条件中,不属于两列相干波所必须满足的条件.(A)频率相同.(B)振动方向相同..(C)振幅相同.(D)相位差恒定.20.如图所示,两列波长为λ的相干波在P 点相遇.波在1S 点振动的初相是1φ,1S 到P 点的距离是1r ;波在2S 点的初相是2φ,2S 到P 点的距离是2r ,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A)21r r k λ-=.(B)212k φφπ-=.(C)21212()/2r r k φφπλπ-+-=.(D)21122()/2r r k φφπλπ-+-=.20.一平面简谐波的表达式为cos(/2) (m)y t x πππ=--,则下列选项中关于该平面波描述正确的是:(A)波长= m λπ.(B)周期2T =s .(C)频率=1νHz .(D)波速2u =m/s.22.如图(a)表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b)为一质点的振动曲线.则图(a)中所表示的0x =处质点振动的初相位与图(b)所表示的振动的初相位分别为(A)均为2π(B)均为2π-.(C)2π与2π-.(D)2π-与2π.23.频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为/3π,则此两点相距(A)2.86m .(B)2.19m .(C)0.5m .(D)0.25m .24.平面简谐机械波在弹性介质中传播时,在传播方向上某介质元在负的最大位移处,则它的能量是(A)动能为零,势能最大(B)动能为零,势能为零(C)动能最大,势能最大(D)动能最大,势能为零25.一平面简谐波在弹性介质中传播,在介质元从最大位移处回到平衡位置的过程中(A)它的势能转换成动能(B)它的动能转换成势能(C)它从相邻的一段介质元中获得能量,其能量逐渐增大(D)它把自己的能量传给相邻的一介质元,其能量逐渐减小26.已知在某一介质中两列相干的平面简谐波的强度之比是421=I I ,则这两列波的振幅之比21A A 是(A)4(B)2(C)16(D)827.人耳能分辨同时传来的不同声音,这是由于(A)波的反射和折射(B)波的干涉(C)波的独立传播特性(D)波的强度不同28.两初相位相同的相干波源,在其叠加区内振幅最小的各点到两波源的波程差等于(A)波长的偶数倍(B)波长的奇数倍(C)半波长的偶数倍(D)半波长的奇数倍29.当超声波经过声阻抗差值较大的介质形成界面时,(A)穿透力增强.(B)分辨率增强.(C)被反射的声能增多.(D)被吸收的声能增多.30.低语时声强为10-⁸W·m -²,飞机发动机的噪声声强为10-¹W·m -²,当其频率为1000Hz 时,则它们的声强级之差为:(A)10-⁶dB.(B)150dB.(C)110dB.(D)70dB.31.一机车汽笛频率为750Hz,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340m·s -¹):(A)810Hz.(B)699Hz.(C)805Hz.(D)695Hz二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若0t =时,振子在负的最大位移处,则初相为_____________;振子在平衡位置向正方向运动,则初相为____________;振子在位移为/2A 处,且向负方向运动,则初相为_____.2.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.若0t =时质点过0x =处且朝x 轴负方向运动,则振动的初相位0ϕ=;若0t =时质点处于/2x A =处且向x 轴正方向运动,则振动的初相位0ϕ=.3.在简谐波的一条射线上,相距0.2m 两点的振动相位差为6/π.又知振动周期为0.4s ,则波速为.4.一简谐振动的表达式为cos(3)x A t φ=+,已知0t =时的初位移为0.04m ,初速度为0.09m/s ,则振幅A =_____________,初相φ=________________.5.一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为.6.当质点以频率ν作简谐振动时,它的动能和势能的变化频率均为,总能量保持不变.7.横波的一个波长指的是波线上相邻两同相点之间的距离;一平面简谐横波的波源简谐运动的周期为T ,则2T 内波形向前推进了个波长.8.已知平面简谐波的表达式为cos()y A Bt Cx =-式中,,A B C 为正值常量,此波的波长是___,波速是______.在波传播方向上相距为d 的两点的振动相位差是________.9.在同一媒质中两列频率相同的平面简谐波的强度之比12/16I I =,则这两列波的振幅之比是12/A A =____________________.10.两相干波源S 1和S 2的振动方程分别是1cos()y A t ωϕ=+和2cos()y A t ωϕ=+.S 1距P 点3个波长,S 2距P 点4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.11.引起人耳听觉的声波频率范围是(),频率高于20000Hz 的机械波叫(),频率低于20Hz 的机械波叫()。
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
物体的振动和波动练习题一、选择题1. 下列哪个不属于机械振动的基本特征?A. 振幅B. 周期C. 频率D. 波长2. 以下哪种波不需要介质传播?A. 机械波B. 横波C. 纵波D. 都需要介质传播3. 以下哪个现象不属于机械波传播中的失能?A. 反射B. 折射C. 干涉D. 散射4. 把频率为30Hz的振动用电路方式表示,需要设备的最小档位是A. 10sB. 1sC. 1msD. 1us5. 振幅越大,波的能量传播速度越快,这一说法A. 对B. 错6. 当一个横波传播时,传播介质上的每一个质点的振动方向A. 垂直于波的传播方向B. 与波的传播方向相同C. 与波的传播方向相反D. 与波的振动方向相同7. 下列不属于机械波的是A. 音波B. 光波C. 水波D. 地震波8. 声音能传播的介质是A. 真空B. 水C. 铁D. 木头9. 长度为0.1m的弦上传播的频率为500Hz的波,其波长为A. 10cmB. 20cmC. 40cmD. 50cm10. 一个在弹簧中传播的波,它所具有的振动特点可以用频率 f 表示。
当频率 f 增大时,振动速度将A. 不变B. 增大C. 减小D. 变为零二、填空题1. 机械波在介质中的传播速度与_________、_________有关。
2. 波长和_________成反比。
3. 波的频率和振动的_________有关。
4. 当光束从水中垂直射入空气时,光的_________发生折射。
5. 在两根相互平行的弹簧上各拧一节,右手拇指指向电流的方向,右手四指的弯曲方向表示_________。
三、简答题1. 请简要说明机械波和电磁波的区别。
2. 请解释频率和周期的概念,并写出它们的单位。
3. 什么是衰减? 请说明衰减对波传播的影响。
4. 什么是驻波? 它是如何形成的?5. 请举例说明机械波的反射和折射现象。
四、计算题1. 一支弦上传播的横波的振动频率为100Hz,波长为0.5m。
精心整理第5章 振动和波动5-1 一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为x = 0.02m 时的瞬时速度、加速度和回复力;(2) (3) 解:式中解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为 振动的频率为 1212π2πk k mων+== 5-4 如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。
解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:振动角频率 2π2d gmρω=振动周期 222ππmT d gρ= 5-5 如图所示,定滑轮半径为R ,转动惯量为J ,轻弹簧劲度系数为k ,物体质量为m ,现将物体从平衡位置拉下一微小距离后放手,不计一切摩擦和空气阻力。
试证明该系统作简谐振动,并求其作微小振动的周期。
习题5-4解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
设平衡时弹簧伸长0l ,有:0kl mg = (1) 物体位于x 位置时(以原点为重力势能零点): 对上式两边求导:,物体械能于是ω=5-7如图所示,质量为10g的子弹,以01000m sv=速度射入木块并嵌在木块中,使弹簧压缩从而作简谐运动,若木块质量为4.99kg,弹簧的劲度系数为3810N m⨯,求振动的振幅。
第10章 振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为x tx 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即)cos(ϕ+ω=t A x由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v 物体的振动加速度 )cos(ϕ+ωω-=t A a 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即2v ω+=2020x A4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即0x v ω-=ϕtan应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
振动习题一、选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的 [ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ ](C)(3)题4. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为:[ ]215(A),or ;A;(B),;3326632(C),or ;(D),;4433ππ±±π±±±π±ππ±±π±±±π±5. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A)s 81; (B) s 61; (C) s 41; (D) s 216. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为 [ ]xtOx 1x 2(A) π23; (B) π; (C) π21 ; (D) 0一、 填空题1. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: , ,2. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为 ;由最大位移到二分之一最大位移处所需要的时间为 。