《有理数的乘方》同步练习3
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
2.7 有理数的乘方【基础训练】 一、单选题1.下列各式计算结果为负数的是( ) A .12-+B .12--C .()41-D .()12-⨯-2.南充市临江新区围绕“一城三区一带”的功能定位,计划到2030年,地区生产总值(GDP )突破900亿元,用科学记数法表示“900亿”元为( ) A .99010⨯元B .9910⨯元C .10910⨯元D .100.910⨯元3.下列计算结果为负数的是( ) A .-(-2)B .|-2|C .(-2)3D .(-2)24.百色境内将新建一条高速公路.该公路起于田阳区那满镇东侧附近,与已建成通车的百色至河池高速公路相连,工程全线长529440m .529440用科学计算法可以表示为( ) A .52.944B .55.294410⨯C .52.9441000⨯D .35.294410⨯5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为( ) A .84410⨯B .94.410⨯C .84.410⨯D .104.410⨯6.下列各组数中,互为相反数的有( )①﹣(﹣3)和﹣|﹣3|;①(﹣1)2和﹣12;①23和32;①(﹣3)3和﹣33 A .①B .①①C .①①①D .①①①7.2020年11月24日,长征五号遥五运载火箭在文昌航天发射场成功发射探月工程嫦娥五号探测器,火箭飞行2200秒后,顺利将探测器送入预定轨道,开启我国首次地外天体采样返回之旅.将2200用科学记数法表示应为( ) A .40.2210⨯B .42.210⨯C .32.210⨯D .22210⨯8.据统计,上海世博会累计入园人数为8030000.用科学记数法表示为( ) A .8×106B .8.03×107C .8.03×106D .803×1049.我省土地总面积为473000平方千米,这个数用科学记数法表示正确的是( ) A .54.7310⨯B ..647310⨯C .60.47310⨯D .447.310⨯10.中国的陆地面积和领水面积共约29970000km ,用科学记数法表示9970000( ) A .499710⨯ B .599710.⨯C .69.9710⨯D .70.99710⨯11.在有理数12-,21-,|2|-,0中,最小的数是( ) A .12-B .|2|-C .21-D .012.在有理数(﹣1)2,﹣(﹣3),﹣|﹣2|,(﹣2)3中负数有几个( ) A .4B .3C .2D .113.下列各式一定成立的是( ) A .(-a )2= a 2B .(-a )3= a 3C .|-a |2=- a 2D .|a |3=a 314.下列说法正确的是( ) A .﹣a 一定是负数B .﹣1是最大的负整数C .0既没有倒数也没有相反数D .若a ≠b ,则a 2≠b 215.下列计算正确的是( ) A .-5-2=-3B .-8-8=0C .2416-=-D .326=16.据央视网报道,2020年1—4月份我国社会物流总额为88.9万亿人民币,“88.9万亿”用科学记数法表示为( ) A .118.8910⨯B .128.8910⨯C .138.8910⨯D .140.88910⨯17.在“十一五”期间,中国减少二氧化碳排放1460000000吨,赢得国际社会广泛赞誉.将1460000000用科学记数法表示为( ) A .714610⨯ B .71.4610⨯ C .91.4610⨯D .101.4610⨯18.下列各式的值一定为正数的是( ). A .2100a +B .100a +C .()2100a +D .2100a +19.下列各式结果相等的是( ) A .22-与()22- B .323与323⎛⎫⎪⎝⎭C .()2--与2--D .20211-与()20211-20.在有理数21-,|1|-,11-,()20211-,()1--中,等于1的相反数的数有( ) A .3个B .2个C .4个D .5个21.计算23222+33+3+m n ⨯⨯⨯个个的结果,正确的是( ) A .23mnB .23n mC .32m nD .23m n22.小宇做了以下4道计算题:①()202012020-=;①()011--=;①111236-=-;①1212÷=.请你帮他检查一下,他一共做对了( ) A .1道B .2道C .3道D .4道23.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000千米的地球同步轨道.将36000用科学记数法表示应为( ) A .33610⨯B .33.610⨯C .43.610⨯D .53.610⨯24.2020年至2023年三年内国家财政将安排约32700000000元资金用于帮助贫困家庭学生,这项资金用科学记数法表示正确的是( ) A .93.2710⨯元B .832710⨯元C .932.710⨯元D .103.2710⨯元25.已知(b +3)2+|a -2|=0,则a +b 的值是( ) A .1B .5C .-5D .-126.下列各组数中,互为相反数的是( ) A .+3与|﹣3|B .(﹣3)2与﹣32C .﹣|﹣3|与﹣(+3)D .+(﹣3)与﹣|+3|27.,a b 互为相反数,下列各数中,一定互为相反数的一组为( ) A .2a 与2bB .3a 与5bC .2n a 与2n b (n 为正整数)D .21n a +与21n b +(n 为正整数)28.下列各式成立的是( ) A .()2222-=-B .2222-=-C .()3322=-D .()2222-=|29.新型冠状病毒蔓延全球,截至到北京时间2021年1月13日,全球新冠肺炎累计确诊病例超过25600000例,数字25600000用科学记数法表示为( )A .80.25610⨯B .625.610⨯C .72.5610⨯D .62.5610⨯30.在()8--,π-, 3.14-,227,0,213⎛⎫- ⎪⎝⎭各数中,正有理数的个数有( ) A .2个 B .3个C .4个D .5个第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题31.已知1()8n a b +=,且1n b =,若,a b 为有理数,n 为整数,则a =________.32.对任意有理数a 、b .下面四个结论:①a +b >a ;①|﹣a |=a ;①a 2≥0;①﹣|﹣a |=|﹣(﹣a )|.其中,正确的结论有_____(填写序号).33.认真分析下列有理数,并按要求答题: ﹣(﹣2);﹣|14-|;+5;﹣23;0.25;227;﹣14;﹣112.(1)其中互为倒数的两个数是 ;(2)比较其中负分数的大小(用“>”连接): ; (3)选择其中两个数计算: ÷ =﹣1;(4)计算其中整数的和(列式并计算): . 34.若实数m ,n 满足|m ﹣2|+(n ﹣2021)2=0,则m -1+n 0=_____.35.333555ab+++⨯⨯⨯=________________三、解答题36.已知||5a =,29b =,且0ab <,求-a b 的值. 37.若(a ﹣2)2+|b ﹣3|=0,求:a b 的值. 38.将12,(﹣2)2,|﹣2|,﹣3,在数轴上表示出来,并用“<”把他们连接起来. 39.写出符合下列条件的数:(1)大于-3且小于2的所有整数; (2)绝对值大于2且小于5的所有负整数;(3)在数轴上,与表示-1的点的距离为2的所有数;(4)不超过353⎛⎫- ⎪⎝⎭的最大整数.40.按要求计算 (1)用简便方法计算240(26)13⨯-. (2)342.56109.110⨯-⨯(结果用科学计数法表示) 41.计算:()()0320202212020()23π---+---+-.42.如果|m ﹣5|+(n +6)2=0,求(m +n )2020+m 3的值.43.记a 1=﹣2,a 2=(﹣2)×(﹣2),a 3=(﹣2)×(﹣2)×(﹣2),……a n =n 个-2相乘. (1)填空:a 4= ,a 23是一个 (填“正”或“负”); (2)计算:a 5+a 6;(3)请直接写出2020a n +1010a n +1的值. 44.在数轴上表示下列各数:2153,|3|,2,0,,222⎛⎫----+ ⎪⎝⎭,并用“<”将它们连接起来. 45.把下列各数用数轴上的点表示出来,并用“<”把它们连接起来.54-,﹣(﹣2),﹣22,﹣|﹣3|,﹣(﹣1)2001,4.5. 46.把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来.-(+4),0,22,52⎛⎫+- ⎪⎝⎭,|1|--47.在数轴上表示下列各数,()22-,1-,0,112-,()2--,并用“<”将它们连接起. 48.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连起来. ﹣0.5,122+,﹣|﹣2.5|,﹣(﹣1),2(2)-49.在数轴上表示下列各数,并把这组数从小到大用“<”连接起来.()2210,1,2,2,22----50.已知|a|=1, 216b =,a+b<0,求2a -b 的值. 51.(1)已知|x |=2,|y |=8.若xy <0,求x +y 的值. (2)若(x -3)2+|x +y |=0,求出x 、y 的值52.若3y -+与()22x +互为相反数,求y x 的值.53.画出数轴,在数轴上表示下列有理数,并用“<”号连接起来.1.5-120 22- ()3-- 2.5- 54.如果()2120a b ++-= (1)求a 、b 的值; (2)求()20202019a b a ++的值.55.已知x 、y 都是有理数,且()2120x y ++-=,求22x y -的值 56.已知一台计算机的运算速度为91.210⨯次/转. (1)求这台计算机3610⨯秒运算了多少次?(2)若该计算机完成一道证明题需要进行131.0810⨯次运算,求完成这道证明题需要多少分钟? 57.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-3, 1.5-,52-,()22-.58.若点M 、点N 在数轴表示的数分别是x 、y ,223x +=,225y =(0)y <,求点M 、点N 两点之间的距离.59.在数轴上表示下列各数.在用“<”号连接.()4--, ()1++, 21-, 4.5--, 122⎛⎫-+ ⎪⎝⎭, ()21.5-60.把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,3-,()1.5-+,314-,()22-。
人教版七年级数学(上)第一章《有理数》1.5有理数的乘方同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.计算(-1)5×23÷(-3)2÷的结果是 ( )。
A. -26B. -24C. 10D. 122.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸变成2根,第二次捏合,再拉伸变成4根,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第n次捏合后可拉出细面条的数量是()。
A. 2nB. 2nC. 2n-1D. 2+n3.下列说法错误的是 ( )。
A. 近似数16.8与16.80表示的意义不同B. 近似数0.290 0是精确到0.0001的近似数C. 3.850×104是精确到十位的近似数D. 49 564精确到万位是4.9×1044.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是( )。
A. 2B. 4C. 8D. 65.已知是由四舍五入得到的近似数,则的可能取值范围是()。
A. B.C. D.6.下列计算正确的是()。
A. B. C. D.7.近似数1.30是由数a四舍五入得到的,那么数a的取值范围是()。
A. 1.25≤a<1.35B. 1.25<a<1.35C. 1.295<a<1.305D. 1.295≤a<1.3058.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()。
A. 1个B. 2个C. 3个D. 0个9.如果一个近似数是1.60,则它的精确值x的取值范围是()。
A. 1.594<x<1.605B. 1.595≤x<1.605C. 1.595<x≤1.604D. 1.601<x<1.60510.如图是一个计算程序,若输入a的值为-1,则输出的结果应为()。
七年级数学上册《第一章 有理数的乘方》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列运算正确的是( )A .525217777⎛⎫-+=-+=- ⎪⎝⎭B .7259545--⨯=-⨯=-C .54331345÷⨯=÷=D .21139⎛⎫-=- ⎪⎝⎭2.过度包装即浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( ) A .3.12×106 B .3.12×105 C .31.2×104 D .0.312×107 3.由四舍五入得到近似数1.20万,是精确到( ) A .万位 B .千位 C .百位 D .十位 4.乐乐在学习绝对值时,发现“”像是一个神奇的箱子;当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化,乐乐把 2(3)-- 放进了这个神奇的箱子,发现 2(3)-- 的结果是( )A .9B .-9C .6D .-6 5.数据26000用科学记数法表示为2.6×10n ,则n 的值是( ) A .2 B .3 C .4 D .5 6.若m 是有理数,则下列各数中一定是正数的是( ) A .|m| B .m 2 C .m 2+1 D .|m+1|7.已知()2280x y -++=,则x y +的值为( ) A .10B .不能确定C .-6D .-108.定义一种新运算符号“Θ”,满足Θba b a b a =-+,则()()1Θ2Θ3-的值为( ) A .7 B .8 C .9D .11二、填空题:9.0.003069= (精确到万分位). 10.在中有个数是正数,有 个数不是整数. 11.“激情同在”第23届冬奥会于2018年2月在韩国平昌郡举行,场馆的建筑面积约是358 000平方米,将358 000用科学记数法表示为 ; 12.已知:(x ﹣2)2+|2y+1|=0,求y x = . 13.计算: 123410001001(1)(1)(1)(1)(1)(1)-+-+-+-++-+-=三、解答题:14.计算:()()3213244⎛⎫---⨯-÷- ⎪⎝⎭.15.计算:(1)2235(3)-+--- .(2)22111(0.4)29462⎛⎫⎛⎫-÷-+-⨯ ⎪ ⎪⎝⎭⎝⎭.16.纳米技术已经开始用于生产生活之中,已知1米等于1 000 000 000纳米,请问216.3米等于多少纳米?(结果用科学记数法表示)17.已知下列有理数: ()()2302412------,,,, (1)计算: ()22-= , 4--= , ()1--=(2)这些数中,所有负数的和的绝对值是(3)把下面的直线补充成一条数轴,在数轴上描出表示 ()()2302412------,,,, 这些数的点,并把这些数标在对应点的上方.18.阅读下列计算过程:313-22÷()2130.752⎡⎤⎛⎫--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦×5. 解:原式= 313-22÷13344⎡⎤-+⎢⎥⎣⎦×5 ①=313+4÷(-2)×5 ②=313-25③ =21415.回答下列问题:(1)步骤①错在 ; (2)步骤①到步骤②错在 ; (3)步骤②到步骤③错在 ; (4)此题的正确解法是什么?参考答案:1. 【答案】D2. 【答案】A3. 【答案】C 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】0.0031 10.【答案】6;6 11.【答案】53.5810⨯ 12.【答案】1413.【答案】-114.【答案】解:原式()()19844⎛⎫=---⨯-÷-⎪⎝⎭()9324=--⨯-9128=-+119=. 15.【答案】(1)解:原式=﹣4+|﹣2|+3 =﹣4+2+3=1 (2)解:原式=( 893636- )÷ 136 +(﹣ 25 )× 52=(﹣136)×36+(﹣1) =(﹣1)+(﹣1) =﹣2.16【答案】(216.3×1000000000=216300000000=2.163×1011.17.【答案】(1)4;-4;1(2)152(3)解:如图18.【答案】(1)去小括号符号错误(2)乘方计算错误(3)运算顺序错误(4)解:原式=3 13-4÷13344⎛⎫+-⎪⎝⎭×5=3 13-4÷52×5=3 13-4×25×5=3 13-8=-4 2 5。
七年级数学《有理数的乘方》同步练习题一、选择题1、118表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表示2×3的积B、任何一个有理数的偶次幂是正数C、-32 与 (-3)2互为相反数D、一个数的平方是,这个数一定是5、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-26、如果一个有理数的正偶次幂是非负数,那么这个数是()A、正数B、负数C、非负数D、任何有理数7、-24×(-22)×(-2) 3=()A、 29B、-29C、-224D、2248、两个有理数互为相反数,那么它们的次幂的值()A、相等B、不相等C、绝对值相等D、没有任何关系9、一个有理数的平方是正数,则这个数的立方是()A、正数B、负数C、正数或负数D、奇数10、(-1)2001+(-1)2002÷+(-1)2003的值等于()A、0B、 1C、-1D、2二、填空题1、(-2)6中指数为,底数为;4的底数是,指数是;的底数是,指数是,结果是;2、根据幂的意义,(-3)4表示,-43表示;3、平方等于的数是,立方等于的数是;4、一个数的15次幂是负数,那么这个数的2003次幂是;5、平方等于它本身的数是,立方等于它本身的数是;6、,,;7、(-2)×(-2)×(-2)= 6×6×6= 5×5=。
《有理数的乘方》同步练习3一、选择题1.设n 是一个正整数,则n 10是( ).A .10个n 相乘所得的积B .是n 位整数C .10后面有n 个零的数D .是一个)1(+n 位整数2.一个数的立方等于它本身,这个数是( ).A .0B .1C .-1,1D .-1,1,03.如果一个数的偶次幂是非负的,那么这个数是( )A .正数B .负数C .非负数D .任何有理数4.如果a a =2,那么a 的值是( )A .1B -1C .0D .1或05.下列说法正确的是( )A .一个数的平方一定大于这个数B . 一个数的平方一定大于这个数的相反数C .一个数的平方只能是正数D .一个数的平方不能是负数6.下列各组数中,相等的共有( ).(1)-52和(-5)2 (2)-32和(-3)2 (3)-(-0.3)5和0.35(4)0100和0200 (5)(-1)3和-(-1)2A .2组B .3组C .4组D .5组7.蟑螂的生命力很旺盛,它繁衍后代的方法为下一代的数目永远是上一代数目的5倍也就是说,如果蟑螂始祖(第一代)有5只,则下一代(第二代)就有25只,依次类推,推算蟑螂第10代有( ).A .512B .511C .510D .59二、计算8. (1)2)35(⨯- (2) 2)3(4-⨯-(3) 22)2(2--- (4)200520042003)1()1()1(-----三、解答题9.一块蛋糕,一只小猴子第一天吃了一半,第二天吃了剩下的一半,第三天又吃剩下的一半,如此吃下去,第五天这只小猴子吃了这块蛋糕的多少?10.已知y x ,都是有理数,且2)4(1+++y x =0 求代数式35xy y x +的值. 11.已知162=x ,求代数式123-+-x x x 的值.参考答案1.D2.D3.D4.D5.D6. B7.C8.(1)225(2)-36(3)-8(4)-119.3210. 6811. 51或-85。
人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。
《1.5 有理数的乘方》训练卷(3)一、选择题1.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人2.下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1|B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()23.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)4.把816000000用科学记数法写成a×10n的形式,则n的值为()A.6B.7C.8D.95.今年,中国共产党走过了百年光辉历程,已经发展成为一个拥有9100多万共产党员的马克思主义执政党,执政70多年来,得到了14亿中国人民最广泛的支持和拥护.其中9100万这个数字用科学记数法可以表示为()A.91×106B.9.1×108C.9.1×107D.0.91×1086.截止到12月10日0时,美国新型冠状病毒肺炎的死亡人数已超过了二战期间美国在战斗中死亡的总人数达到29万1754例,将29万1754用科学记数法表示为()A.2.91754×105B.0.291754×106C.2.91754×106D.29.1754×1047.2021年5月15日天问一号探测器成功着陆于火星乌托邦平原南部预选着陆区,中国首次火星探测任务着陆火星取得圆满成功.为了使探测数据安全有效地传回地球,我国4台测控站联网组阵,实现火星距地球最远4亿公里时的测控通信.4亿用科学记数法表示为()A.4×104B.0.4×108C.0.4×109D.4×1088.下列计算正确的是()A.33=9B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣39.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为()A.3B.3或5C.3或﹣5D.410.已知|x﹣3|+(2+y)2=0,则y x的值为()A.9B.﹣9C.﹣8D.8二、填空题11.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为.12.若|x﹣2|+(y+3)2=0,则(x+y)2021=.13.某种细菌在培养过程中,每半小时分裂1次,每次一分为二,若这种细菌由一个分裂到16个,那么这个过程要经过分钟.14.如图,某学校“TLCT”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“TLCT”的网络.那么她输入的密码是.15.我们把对非负实数x“四舍五入”到个位的值记为《x》,即当n为非负整数时,若n﹣≤x<n+,则《x》=n.例如《0.67》=1,《2.49》=2,…下列结论中:①《2x》=2《x》;②当m为非负整数时,《m+2x》=m+《2x》;③满足《x》=x的非负实数x只有两个.其中结论正确的是.(填序号)三、解答题16.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c•(a3﹣b)的值.17.一个圆形喷水池(如图)的半径是3米,要在其周围修1米宽的小路.小路的面积是多少平方米?(π取3.14,结果保留两位小数)18.计算:.19.将如图所示的长为1.5×102cm,宽为1.2×102cm,高为0.8×102cm的大理石运往某地进行建设革命历史博物馆.(1)求每块大理石的体积.(结果用科学记数法表示)(2)如果一列火车总共运送了3×104块大理石,每块大理石约重4×103千克,请问这列火车总共运送了约重多少千克大理石?(结果用科学记数法表示)20.计算:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].。
人教七年级数学上同步练习《有理数的乘方》(含答案)1. (-5)6表示( )A .6与-5相乘的积B .5与6相乘的积C .6个-5相乘的积D .6个-5相加的和2. (-2)3等于( )A .-6B .6C .-8D .83.下列各组数互为相反数的是( )A .32与-23B .32与(-3)2C .32与-32D .-23与(-2)34.下列说法中,正确的有( )①任何小于1的有理数的平方都比1小;②任何有理数的平方都是正数;③互为相反数的两数的平方相等;④平方得225的数只有15.A .0个B .1个C .2个D .3个5.已知n 表示正整数,则()=-+2121nn ( ) A .0 B .1 C .0或1 D .无法确定,随n 的值的不同而不同6.某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂两个),经过两个小时,这种细菌由1个可分裂为( )A .4个B .8个C .16个D .32个7.下列各式:①-(-4);②-|-4|;③(-4)2;④-42;⑤-(-4)4;⑥-(-4)3,其中结果为负数的序号为________.8.一个数的平方等于这个数的本身,此数为______;一个数的立方等于这个数的本身,此数为________;一个数的平方等于这个数的立方,此数为______.9.计算:(1)=⎪⎭⎫ ⎝⎛-432 ,=⎪⎭⎫ ⎝⎛254 ; (2)=⎪⎭⎫ ⎝⎛-371 ,()=-41.0 ; (3)=⎪⎭⎫ ⎝⎛-2211 ,=-243 ; 10.平方等于49的数是___;_____的平方等于0.0001;立方等于-64的数是___.11.给出依次排列的一列数:2,-4,8,-16,32,…(1)依次写出32后面的三个数: ;(2)按照规律,第n 个数为 。
12.有一列数,,174,103,52,21 --那么第7个数是 。
13.一根1 m 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪去剩下的一半后剩下的长度是多少?第n 次剪去剩下的一半后剩下的长度呢?14.已知|a +4|+(b -2)2=0,求(a ×b)2的值.15.计算:(1)()274212125.0-⨯⎪⎭⎫ ⎝⎛-÷-;(2)()()2015351212-⨯⎪⎭⎫ ⎝⎛⨯-;(3)()223232⨯--⨯- 16.探索规律:观察由※组成的图案和算式,请猜想:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)1+3+5+7+9+…+19=____;(2)请猜想:1+3+5+7+9+…+(2n -1)等于多少?(用含n 的式子表示)17.观察下列数:1,2,3,4,5,6,7,8,9,…,将这列数排列成下列形式;那么第10行从左边数第9个数是多少?人教七年级数学上同步练习《有理数的乘方》参考答案1. C2. C3. C4. B5. C6. C7. ② ④ ⑤8. 1和0;1,-1和0;1和09. (1)8116-, 2516 (2)3431-,0.0001 (3),49,49- 10.±7,±0.01,-4 11.(1)-64,128,-256 (2)()n n 211+- 12. 507- 13.14. 解:6415. (1)解:原式=1(2)解:原式=4(3)解:原式=-5416. (1)100(2)n 217. 解:第10行有19个数,前9行共有1+3+5+7+…+17=81个数,第9行最后一个数就是81,所以第10行第9个数是90.。
2.9 有理数的乘方一、选择题(每小题4分,共12分)1.(-1)2013的相反数是( )A.1B.-1C.2011D.-22.在-|-3|3,-(-3)3,(-3)3,-33中,最大的数是( )A.-|-3|3B.-(-3)3C.(-3)3D.-333.(2012·滨州中考)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+…+22013,因此2S-S=22013-1,仿照以上推理,计算出1+5+52+53+…+52012的值为( )A.52012-1B.52013-1C.D.二、填空题(每小题4分,共12分)4.(2012·铜仁中考)照下图所示的操作步骤,若输入x的值为5,则输出的值为.输入x →加上5 →平方→减去3 →输出5.经过市场调查发现,某种电子产品每经过两年价格就降为原来的一半,已知这种电子产品6年前的价格为9600元,问现在的价格是元.6.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字);0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5;二进制的10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的110111等于十进制的数.三、解答题(共26分)7.(9分)计算下列各题(1)(-3)2-(-2)3÷(-)3.(2)-(-)3×(-4)2÷(-)2.(3)(-1)·(-1)2·(-1)3·…·(-1)99·(-1)100.8.(7分)有一种纸的厚度是0.1毫米,若拿两张重叠在一起,将它们对折1次后,厚度为4×0.1毫米.(1)对折2次后,厚度为多少毫米?(2)对折6次后,厚度为多少毫米?【拓展延伸】9.(10分)问题:你能很快算出20152吗?为了解决这个问题,我们考虑个位上的数字为5的自然数的平方,任意一个个位数是5的自然数的平方可写成(10n+5)2的值(n为自然数).请你试着分析n=1,n=2,n=3,…,这些简单情况,从中探索其规律,并归纳、猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:152=225可写成100×1×(1+1)+25,252=625可写成100×2×(2+1)+25,352=1225可写成100×3×(3+1)+25,452=2025可写成100×4×(4+1)+25,……752=5625可写成,852=7225可写成.(2)从第(1)题的结果,归纳、猜想得:(10n+5)2= .(3)根据上面的归纳、猜想,请算出:20152= .答案解析1.【解析】选A.(-1)2013=-1,-1的相反数是1.所以(-1)2013的相反数是1.2.【解析】选B.-|-3|3=-27;-(-3)3=27;(-3)3=-27;-33=-27.3.【解析】选C.令S=1+5+52+53+…+52012,则5S=5+52+53+…+52013,两式相减得:5S-S=52013-1,于是S=.4.【解析】(5+5)2-3=100-3=97.答案:975.【解析】每经过两年价格为原来的一半.9600×()3=9600×=1200(元).答案:12006.【解析】由题意知,110111=1×25+1×24+0×23+1×22+1×2+1=55,则二进制的110111等于十进制的数55.答案:557.【解析】(1)原式=9-(-8)÷(-)=9-(-8)×(-)=9-27=-18.(2)原式=-(-)×16÷=×16×64=16. (3)原式=(-1)×1×(-1)×…×(-1)×1=(-1)50×150=1×1=1. 8.【解析】(1)2×22×0.1=0.8(毫米),即对折2次后,厚度为0.8毫米. (2)2×26×0.1=12.8(毫米),即对折6次后,厚度为12.8毫米. 9.【解析】(1)752=5625可写成:100×7×(7+1)+25, 852=7225可写成:100×8×(8+1)+25. (2)(10n+5)2=100×n ×(n+1)+25. (3)20152=100×201×202+25=4060225. 北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方2C.这个方程可以化成一元二次方程的一般形式 D.这个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..方程可以用公式法求解3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分A.1B.2C.3D.44.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。
初一数学有理数的乘方练习题及答案
有理数的乘方是有理数乘法运算的延续和拓展,是继续学习整式运算、方程、函数等初中数学知识的基础,接下来小编为你整理了初一数学有理数的乘方练习题及答案,一起来看看吧。
初一数学有理数的乘方练习题初一数学有理数的乘方练习题答案猜你感兴趣的:
1.初一上册数学有理数的乘方同步试题及答案
2.人教新版初一上册数学有理数的乘方试题及答案
3.初一上册数学有理数的乘方试题
4.浙教版初一上册数学有理数的乘方检测题及答案
5.七年级数学上册2.9有理数的乘方测验题
第1页共1页。