测量热力测试技术
- 格式:ppt
- 大小:340.00 KB
- 文档页数:68
第一至三章一、名词解释测量:是人类对自然界中客观事物获得数量观念旳一种认识过程。
它用特定旳工具和措施,通过试验将被测量与单位同类量相比较,在比较中确定出两者比值。
稳态参数:数值不随时间而变化或变化很小旳被测量。
瞬变参数:随时间不停变化数值旳被测量(非稳态或称动态参数),如非稳定工况或过渡工况时内燃机旳转速、功率等。
模拟测量:在测量过程中首先将被测物理量转换成模拟信号,以仪表指针旳位置或记录仪描绘旳图形显示测量旳成果(不体现为“可数”旳形式) 。
数字测量:测量可直接用数字形式表达。
通过模/数(A/D)转换将模拟形式旳信号转换成数字形式。
范型仪器:是准备用以复制和保持测量单位,或是用来对其他测量仪器进行标定和刻度工作旳仪器。
精确度很高,保留和使用规定较高。
实用仪器:是供实际测量使用旳仪器,它又可分为试验室用仪器和工程用仪器。
恒定度:仪器多次反复测量时,其指示值稳定旳程序,称为恒定度。
一般以读数旳变差来表达.敏捷度:它以仪器指针旳线位移或角位移与引起这些位移旳被测量旳变化值之间旳比例S来表达。
敏捷度阻滞:敏捷度阻滞又称为感量,感量是足以引起仪器指针从静止到作极微小移动旳被测量旳变化值。
一般仪器旳敏捷度阻滞应不不小于仪器容许误差旳二分之一。
指示滞后时间:从被测参数发生变化到仪器指示出该变化值所需旳时间,又称时滞。
测量值与真值之差称为误差。
因子:在试验中欲考察旳原因称为因子。
因子又可分为没有交互作用和有交互作用旳因子,前者是指在试验中互相没有影响旳因子,而后者则在试验中互相有制抑作用。
水平:每个因子在考察范围内提成若干个等级,将等级称为水平二、填空题常用旳测量措施有直接测量、间接测量、组合测量。
测试中,被测量按照其与否随时间变化可以分类稳态参数和瞬变参数。
有时被测参数旳量或它旳变化,不体现为“可数”旳形式,这时就不能用一般旳测量措施,对应旳就出现了模拟测量和数字测量。
按工作原理,任何测量仪器都包括感受件,中间件和效用件三个部分。
热量和温度的测量热量和温度是热学领域中常用的概念,它们在物理学、工程学、环境科学等领域中都有重要的应用。
准确测量热量和温度对于科学研究和工业生产都具有重要意义。
本文将介绍热量和温度的概念、测量方法以及常用仪器设备。
一、热量和温度的概念热量是物体内部分子间传递的能量,通常表现为温度的升高或物体发热。
温度则是反映物体内部分子热运动强弱的物理量,它是一个与热平衡有关的状态参量。
在国际单位制中,热量的单位是焦耳(J),温度的单位是摄氏度(℃)或开尔文(K)。
二、热量的测量方法有多种方法可以测量热量,常见的方法包括热平衡法、电热等效法和相变热法。
1. 热平衡法热平衡法是通过将待测物体与已知温度的物体接触,使其达到热平衡,从而确定待测物体的温度。
这种方法适用于固体或液体的温度测量,常用的热平衡仪器有温度计、热导仪和红外线测温仪。
2. 电热等效法电热等效法是利用已知功率的电热器加热待测物体,在一定时间内测量物体温度的变化,从而确定物体的热容量。
电热等效法适用于固体和液体的热容量测量,常见的仪器设备有电热容量测定器和差示扫描量热仪。
3. 相变热法相变热法是通过测量物质相变时释放或吸收的热量来确定物体的热容量。
常见的相变热法包括冰点法和沸点法,它们分别利用了水在冰点和沸点时的相变热。
三、温度的测量方法温度的测量方法多种多样,常用的包括温度计、热敏电阻、热电偶和红外线测温。
1. 温度计温度计是利用物质的热胀冷缩性质来测量温度的仪器,常见的温度计有水银温度计、酒精温度计和电子温度计。
水银温度计是最常用的一种,它利用水银在温度改变时的体积变化来测量温度。
2. 热敏电阻热敏电阻是一种电阻值随温度变化的元件,它的电阻与温度成正比或反比关系。
根据电阻与温度变化的不同曲线特性,常见的热敏电阻有铂电阻、镍铬电阻和铜电阻。
3. 热电偶热电偶是利用两种不同金属的热电效应来测量温度的仪器,它的原理是两种金属在不同温度下产生电势差。
常用的热电偶有铂铑-铂热电偶和铜-铜镍热电偶。
DSC检测学名差示扫描量热分析,英文名称为Differential Scanning Calorimetry,简称DSC,是在程序控制温度下,测量输入到试样和参比物的能量差随温度或时间变化的一种技术,关键点测量输入到试样和参比物的功率差与温度之间关系,那么这种检测的作用有哪些呢?1、优势明显DSC检测的突出优点有:使用温度范围广(-175℃~725℃)、分辨能力高和灵敏度高。
测试材料限制少,除腐蚀性材料外,一般材料均可。
分析功能覆盖广,除差热分析一般功能,还可以测试各种热力学参数,如:热焓、熵和比热容等。
根据所用测量方法的不同,可分为功率补偿型DSC和热流型DSC。
2、应用范围广泛这项技术被广泛应用于一系列应用,包括石油产品、高聚物、配合物、液晶、生物体系、医药等有机和无机化合物,成为研究有关问题的有力工具。
它既是一种例行的质量测试和作为一个研究工具。
该设备易于校准,使用熔点低铟例如,是一种快速和可靠的方法热分析示差扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。
DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。
如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。
3、可测定参数多样在操作中,通过单独的加热器补偿样品在加热过程中发生的热量变化,以保持样品和参比物的温差为零。
这种补偿能量(即样品吸收或放出的热量)所得的曲线称DSC曲线。
热等静压测试-概述说明以及解释1.引言1.1 概述热等静压测试是一种利用加热和压力的方法来模拟高温高压环境下的工况测试技术。
它可以用于研究各种材料在极端条件下的性能和行为,以及评估各种工艺和设备在高温高压环境下的可靠性。
热等静压测试通过将待测样品置于高温炉中,并施加一定的压力,使样品在高温高压下保持静态状态。
在此过程中,样品受到来自压力和温度的双重作用,从而可以模拟实际工程中的极端环境条件。
同时,热等静压测试还可以通过监测样品的形变、应力和温度等参数来评估样品的性能和可靠性。
热等静压测试在航空航天、能源、材料科学等领域具有广泛的应用。
在航空航天领域,热等静压测试可以用于模拟航空发动机的高温高压工况,评估材料的耐热性能和热膨胀特性,从而指导材料的选用和工艺的改进。
在能源领域,热等静压测试可用于研究核能发电中的燃料元件在高温高压条件下的行为,并评估其安全性和稳定性。
在材料科学领域,热等静压测试可以用于研究新材料的性能和行为,探究材料的力学性能、热学性能以及相变行为等,为材料的设计和应用提供科学依据。
总之,热等静压测试作为一种模拟高温高压环境下的工况测试技术,在各个领域具有重要的应用价值。
通过热等静压测试,我们可以更好地理解材料在极端条件下的行为,为工程和科学研究提供可靠的实验数据和理论依据。
虽然热等静压测试具有许多优势,但也存在一些局限性,需要进一步的研究和改进。
1.2文章结构文章结构部分的内容可以是关于整篇文章的组织和框架的介绍。
具体内容可以包括以下几点:1.2 文章结构本文将按照以下结构进行阐述:第2节将详细介绍热等静压测试的定义与原理。
在这一部分,我们将解释热等静压测试是什么以及其核心原理是什么。
通过对热等静压测试的原理进行深入分析,我们可以更好地理解其应用和意义。
第3节将讨论热等静压测试的应用领域。
在这一部分,我们将阐述热等静压测试在工程领域的广泛应用,包括但不限于航空航天、能源、材料科学等。
1.测量方法:直接测量:凡是被测量的数值可以从测量仪器上读出,常用方法1.直读法2.差值法3.替代法4.零值法间接测量:被测量的数值不能直接通过测量仪器上读出,而直接测量与被测量有一定函数关系的量,通过运算被测量的测值。
组合测量:测量中各个未知量以不同的组合形式出现,根据直接测量与间接测量所得的数据,通过方程求解未知量的数值2.测量仪器:可分为范型仪器和实用仪器一、感受件:它直接与被测对象发生联系,感知被测参数的变化,同时对外界发出相应的信号。
应满足条件:1.必须随测量值的变化发生相应的内部变化 2.只能随被测参数的变化发出信号 3.感受件发出的信号与被测参数之间必须是单值的函数关系二、中间件:起传递作用,将传感器的输出信号传给效用件常用的中间件:导线,导管三、效用件:把被测信号显示出来。
分为模拟显示和数字显示3.测量仪器的主要性能指标:一、精确度:测量结果与真值一致的程度,系统误差与随机误差的综合反映二、恒定度:仪量多次重复测量时,其指示值的稳定程度三、灵敏度:认仪器指针的线位移或角位移与引起变化值之间的比例四、灵敏度阻滞:在数字测量中常用分辨率表示五、指示滞后时间:从被测参数发生变化到仪器指示出现该变化值所需时间4.传递函数是用输出量与输入量之比表示信号间的传递关系。
H(s)(s)(s)作用:传递函数描述系统的动态性能,不说明系统的物理结构,只要动态特性相似,系统可以有相似的传递函数串联环节:H(s)1(s)H2(s)并联环节H(s)1(s)2(s)反馈环节H(s)(s)/1(s)(s)5.测量系统的动态响应:通常采用阶跃信号和正弦信号作为输入量来研究系统对典型信号的响应,以了解测量系统的动态特性,依次评价测量系统测量系统的阶跃响应:一阶测量系统的阶跃响应二阶测量系统的阶跃响应测量系统的频率响应:一阶测量系统的频率响应二阶测量系统的频率响应7.误差的来源:每一参数都是测试人员使用一定的仪器,在一定的环境下按一定的测量方法和程序进行的,由于受到人们的观察能力,测量仪器,方法,环境条件等因素的影响,所得到的测量值只能是接近于真值的近似值,测量值与真值之差称为误差。
热能与动力工程测试技术HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、何为动压静压总压P129答:静压是指运动气流里气体本身的热力学压力。
总压是指气流熵滞止后的压力,又称滞止压力。
动压为总压与静压之差。
2、试画出皮托管的结构简图,说明皮托管的工作原理,并导出速度表达式(条件自拟,不考虑误差)。
P143~P1443、某压力表精度为级,量程为0~,测量结果显示为,求精确度、最大绝对误和差示值相对误差δ4、在选用仪器时,应在满足被测要求的前提下,尽量选择量程较小的仪器,一般应使测量值在满刻度要求的2/3为宜。
P55、测量误差可分为系统误差、随机(偶然)误差、过失误差。
6、随机误差正态分布曲线的四个特性为单峰性、对称性、有限性、抵偿性。
7、热电偶性质的四条基本定律为均质材料定律、中间导体定律、中间温度定律、标准电极定律。
8、流量计可分为:容积型流量计、速度型流量计、质量型流量计。
P1619、除利用皮托管测量流速外,现代常用的测速技术有:热线(热膜)测速技术、激光多普勒测速技术(LDV)、粒子图像测速技术。
10、简述金属应变式传感器的工作原理。
答:金属应变式传感器的工作原理是基于金属的电阻应变效应,即导体或半导体在外力作用下产生机械形变时,电阻值也随之产生相应的变化。
P6311、在热能与动力工程领域中,需要测量的物理量主要有温度、压力、流量、功率、转速等。
12、按照得到最后结果的过程不同,测量方法可以分为直接测量,间接测量和组合测量。
13. 按工作原理,任何测量仪器都应包括感受件,中间件和效用件。
14. 测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差。
15. 系统误差的综合包括代数综合法、算术综合法和几何综合法。
16. 金属应变式电阻传感器温度补偿的方法有桥路补偿(补偿片法)和应变片自补偿。
一、填空1.仪表的灵敏度越高则( C )A.测量精确度越高B.测量精确度越低C.测量精确度越不能确定D.仪表的线性度越好2.造成测压仪表静态变差的因素是( B )A.弹性模量B.弹性迟滞C.材料的泊松比D.温度特性3.请指出下列误差属于系统误差的是( C )A.测量系统突发故障造成的误差B.读书错误造成的误差C.电子电位差计滑线电阻的磨损造成的误差D.仪表内部存在摩擦和间隙等不规则变化造成的误差4.用光学温度计测量物体温度,其示值( B )A.不受测量距离的影响B.是被测物体的亮度温度C.不受被测物体表面光谱发射率的影响D.不受反射光影响5.仪表的灵敏度越高则( C )A.测量精度越高B.测量精度越低C.测量精度不确定D.仪表的线性度越好6.表征仪表读书精密性的指标是( C )A.灵敏度B.线性度C.分辨率D.准确度7.用金属材料测温热电阻下列说法正确的是( D )A.金属材料的密度盐碱对测温越有利B.金属材料的强度越高对测温越有利C.金属合金材料掺杂越均匀对测温越有利D.金属纯度越高对测温越有利8.热电阻测温采用“三线制”接法其目的在于( C )A.使回路电阻为定值B.获得线性刻度C.消除连接导线电阻造成附加误差D.使工作电流为定值9.标准节流件的直径比β越小,则( D )A.流量测量越准确B.流量的压力损失越小C.要求水平直管段越长D.流量的压力损失越小10.涡流流量输出______信号 ( B )A.模拟B.数字C.电流D.电压11.将被测压差差换成电信号的设备是( C )A.平衡容器B.脉冲管路C.压差变送器D.显示器12.过失误差处理方法通常为( B )A.示值修正法B.直接别除法C.参数校正法D.不处理13.欲用多根热电偶测量某房间内平均温度,一般采用什么的热电偶布置方式( A )A.并联B.反接C.串联D.以上都不对14.下列关于热电偶均质导体定律下列说法错误的( D )A.热电极必须采用均质材料B.只能用两种不同材料的均质导体构成热电偶C.热电势与热电极温度分布无关D.热电势与热电极的截面积有关15.热力学温度的符号是 BA.K B.T C.t D.℃16.准确度最高的热电偶是 ( A )A.S型 B.K型 C.J型 D.E型17.现有以下几种测温装置,在测汽轮机轴瓦温度时,最好选用( C ) A镍铬一镍硅热电偶 B.充气压力式温度计 C.铂热电阻 D.铜—铜镍热电偶18.有一铂铑一铂热电偶,设其E(300℃,500℃)为X,E (500℃,250℃) 10为) Y , E (250℃,0℃)为z,则 ( C )A.X=Y=z B.X=Y≠z C. X≠Y≠z D.X≠Y=z19.被测量为脉动压力时,所选压力表的量程应为被测量值的( C )A.1.5倍 B.1倍 C. 2倍 D.2.5倍20.用热电偶测量o℃以上的温度时,若与二次表相连接补偿导线极性接反,将使指示值( C )A.偏高B.正常C.偏低D.以上都不对21.有一热电阻为一次元件的测温仪表.其示值比实际值偏低或指示不稳定,可能原因( A )A.接线盒的接线端处有尘土或铁屑B.电阻元件电阻丝断C.电阻元件的连接导线短路D.电阻元件的连接导线断路二、填空1、为使测量结果正确,要求测试系统有足够的灵敏度,线性度,滞后差要尽可能小2、测试系统的动态特性是一种衡量系统动态响应的指标3、压力的测量方法有两种力学测量方法、电学测量方法4、电阻应变片按其结构形式分为粘贴式和非粘贴式5、常见的温度补偿法自补偿法和桥路补偿法6、温度计分为两类接触式测温和非接触式测温7、电阻温度计的最主要优点是稳定,灵敏具有较高的测温准度8比较适宜制作热电阻材料的主要有铂,镍,铜9、三线补偿法是消除连接热电阻的导线电阻的一种常用方法10、动态,气动,化学因素为热电阻的电偶测温的个性问题,与气流的流态,物理属性变化有关11、温度场测试技术又称温度场显示技术12、光机扫描方式有两种方式,即物扫描和像扫描13、热电阻温度计是通过测定热电阻的电阻值来推算温度的14、测量热电阻的电阻值常常采用不平衡电桥、自动平衡电桥15、热电阻的结构形式很多,一般由感温元件,绝缘管,保护管,接线盒四个部分组成16、(辐射)就是由电磁波来传递能量的过程17、热成像系统可分为光机扫描和非光机电扫描两种类型18、平行光影仪可分为投射式和非投射式两种19、探针流速计用于测量气体流速20、双光速光路是目前激光测速中应用最广泛的光路形式三、简答题1、热工测试技术的测量手段有哪几种?答:○1力学测量手段○2电学测量手段○3光学测量手段2、液体压力计的基本测量原理是什么?答:利用工作液柱所产生的压力与被测压力平衡,根据液柱高度差来进行压力测量的仪器3、简要描述一下热力学第零定律答:如果两个热力学系统中的每一个都与三个热力学系统处于热平衡,则它们也必定处于热平衡4、压阻效应现象是什么?答:硅、锗等半导体材料受到外力作用而产生应力时,其电阻率随应力的改变而改变的现象5、简述测量系统的动态特性?答:测量系统的动态特性是一种衡量测量系统动态响应的指标。
实验三种常用热分析方法测定物质热性能热分析技术是研究物质热性能的一种技术。
这一技术可以用来确定和测量物质的热膨胀、热稳定性、热力学性质、热循环行为和物理变形。
本文将讨论常用热分析技术:热重分析(DSC)、热流比测定(TGA)和热分析仪(TMA)。
一、热重分析(DSC)
热重分析(DSC)是利用重量和热量变化的原理,测量物质热反应过程中发生的变化。
它由一个温度控制器、热重传感器和一个金属sample holder组成。
当sample holder 中的样品经过恒定的温度梯度加热或冷却时,热重传感器能够测量出在恒定的温度下重量的变化情况,从而推断出样品物质热反应的结构变化情况,并针对特定的热反应事件作出精确的测定,例如熔点、溶解度、水解度等。
热重分析的优势在于它可以测量出温度范围内的物质失重量,并且具有微量检测的能力,它可以测量物质的微量失重量以及释放的热量,这些受物质内部结构变化的影响。
二、热流比测定(TGA)
热流比法(Thermal Gravimetric Analysis,TGA)是一种热力学测试技术,它可以测量样品在不同温度下的重量变化。
它是通过体积的变化或温度的变化来测量重量变化的,常用来测量样品的热稳定性、热膨胀性和热导率等热力学性质。