第三章 矩阵与算符
- 格式:pdf
- 大小:383.85 KB
- 文档页数:14
第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。
ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。
为强调算符的特点,常常在算符的符号上方加一个“^”号。
但在不会引起误解的地方,也常把“^”略去。
二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。
例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。
2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。
3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。
ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。
一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。
5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
动量矩阵与角动量算符的计算方法动量矩阵和角动量算符是量子力学中非常重要的概念,它们被广泛应用于计算物体的运动和旋转。
本文将对动量矩阵和角动量算符的计算方法进行详细介绍。
一、动量矩阵的定义动量矩阵是用于描述物体在运动中的具体状态的矩阵,通常用符号P表示。
动量矩阵的元素可以表示物体在各个方向上的动量,它们的计算方法为:$P_{i,j} = -i\hbar\frac{\partial}{\partial x_{i}}\delta_{i,j}$其中,i和j分别表示三个坐标轴上的方向,$\delta_{i,j}$为Kronecker delta符号,$\hbar$为普朗克常数。
根据这个公式,动量矩阵可以表示为:$$P=\begin{pmatrix}P_{x} & 0 & 0 \\0 & P_{y} & 0 \\0 & 0 & P_{z} \\\end{pmatrix}$$二、角动量算符的定义角动量算符是用于描述物体旋转状态的算符,通常用符号J表示。
角动量算符包含了三个不同的方向上的状态,分别称为Jx、Jy、Jz。
它们的计算方法为:$J_{x} = -i\hbar(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y})$$J_{y} = -i\hbar(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z})$$J_{z} = -i\hbar(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x})$其中,x、y、z分别表示三个坐标轴上的方向。
根据这个公式,可以得到角动量算符的矩阵表示为:$$J=\begin{pmatrix}J_{x} & 0 & 0 \\0 & J_{y} & 0 \\0 & 0 & J_{z} \\\end{pmatrix}$$三、动量矩阵和角动量算符的关系动量矩阵和角动量算符之间存在着非常重要的关系。
1第三章矩阵力学基础(I)—力学量和算符上一章,中我们系统地介绍了波动力学。
它的着眼点是波函数),(t x ψ。
薛定谔从粒子的波动性出发,用波函数),(t x ψ猫述粒子的运动状态。
通过在波函数的运动方程中引入 的方法进行量子化,在一定的边界条件下,求解定态薛定谔方程,证明对于束缚态,会出现量子化的、分立的本征谱。
在本章和下一章中,我们将介绍另一种量子化的方案。
它是海森伯(Heisenberg )、玻恩、约丹(Jordan)、坎拉克(Dirac)提出和实现的。
着眼点是力学量和力学量的测量。
他们将力学量看成算符。
通过将经典力学运动方程中的坐标和动量都当作算符的方法,引入r 和p 的对易关系.将经典的泊松括号改为量子的泊松括号,实现量子化。
这种量子化,通常称为正则量子化。
在选定了一定的“坐标系”或称表象后,算符用矩阵表示。
算符的运算归结为矩阵的运算。
本章将首先讨论力学量的算符表示和算符的矩阵表示,证实量子力学中的力学量必须用线性厄米算符表示。
在选取特定的表象即“坐标系”后,这些算符对应线性厄米矩阵。
然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。
我们将证实算符的运动方程中含有对易子,出现 。
在矩阵力学中,算符的运动方程起着和波动力学中波函数的运动方程—薛定谔方程—同样的作用。
§3. 1力学量的平均值在量子力学中,微观粒子的运动状态用波函数描述。
一旦给出了波函数,就确定了微观粒子的运动状态.于是自然要问,所谓“确定”是什么意思,在什么意义下讲“确定”?在本章中我们将看到:所谓“确定”,是在能给出几率和求得平均值意义下说的。
一般说来,当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值均以一定的概率出现。
当给定描述这一运动状态的波函数ψ后,力学量出现各种可能值的相应的概率就完全确定。
利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。
第3章 实验二矩阵与向量运算实验目的:在MATLAB 里,会对矩阵与向量进行加、减、数乘、求逆及矩阵的特征值运算,以及矩阵的LU 分解。
3.1 矩阵、逆矩阵运算 例3.1 设矩阵A 、B 如下:1221,3415A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,分别求出B A +、B A *、A 的逆矩阵,A 矩阵的行列式的值。
在matlab 软件中的命令窗口输入: A=[1 2;3 4]; B=[-2 1;1 5]; A+B 得到: ans =-1 3 4 9A 的逆矩阵由命令inv(A)计算,例如:令A=[1 2;3 4]; 则 C=inv(A) 得到: C =-2.0000 1.0000 1.5000 -0.5000对于任意非奇异的方阵,都可以用命令inv 计算其逆矩阵。
在matlab 里,矩阵乘法用乘法运算符表示,可以通过命令输入:A*B得到:ans =0 11 -2 23在matlab 里,可以通过命令输入:det(A)得到: -2在matlab 里,在矩阵的后面加一个撇号得到该矩阵的转置,例如: F=A ’ 使矩阵F 变为A 的转置。
下面的命令创建一个m ×m 的单位矩阵: s=eye(m)m ×n 的零矩阵用s=zeros(m*n)给出。
m ×n 的元素都是1的矩阵用写为: w=ones(m,n)如果A 是一个矩阵,则zeros(size(A))和ones(size(A))分别得到与A 大小相同的零矩阵和单位矩阵。
命令rand(m,n)创建一个m ×n 的随机矩阵。
命令hilb(m)创建一个Hilbert 矩阵的特殊矩阵。
3.2 矩阵的特征值设A 是一个n ×n 方阵,X 是一个n 维向量,乘积Y=AX 可以看作是n 维空间变换。
如果能够找到一个标量λ,使得存在一个非零向量X ,满足:AX=λX (3.1) 则可以认为线性变换T(X)=AX 将X 映射为λX,此时,称X 是对应于特征值λ的特征向量。
量⼦⼒学总结习题考卷及答案第⼀章⒈玻尔的量⼦化条件,索末菲的量⼦化条件。
⒉⿊体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对⿊体,简称⿊体。
⒎普朗克量⼦假说:表述1:对于⼀定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量⼦的⽅式进⾏,每个量⼦的能量为:ε=h ν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到⾦属上,有电⼦从⾦属上逸出的现象。
这种电⼦称之为光电⼦。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率⼤于⼀定值v0 时,才有光电⼦发射出来。
若光频率⼩于该值时,则不论光强度多⼤,照射时间多长,都没有光电⼦产⽣。
②光电⼦的能量只与光的频率有关,与光的强度⽆关。
光的强度只决定光电⼦数⽬的多少。
⒑爱因斯坦光量⼦假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,⽽且以这种形式在空间以光速C 传播,这种粒⼦叫做光量⼦,或光⼦。
爱因斯坦⽅程⒒光电效应机理:当光射到⾦属表⾯上时,能量为E= hν的光⼦⽴刻被电⼦所吸收,电⼦把这能量的⼀部分⽤来克服⾦属表⾯对它的吸引,另⼀部分就是电⼦离开⾦属表⾯后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电⼦不能脱出⾦属表⾯,从⽽没有光电⼦产⽣。
②光电⼦动能只决定于光⼦的频率:上式表明光电⼦的能量只与光的频率ν有关,⽽与光的强度⽆关。
⒔康普顿效应:⾼频率的X射线被轻元素如⽩蜡、⽯墨中的电⼦散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了⼀个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射⾓增⼤⽽增⼤。
⒖量⼦现象凡是普朗克常数h在其中起重要作⽤的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒⼆象性⒘与运动粒⼦相联系的波称为德布罗意波或物质波。
算符和矩阵的关系
算符和矩阵之间存在密切的关系。
算符是抽象定义的,而矩阵是算符的具体数值表示。
对于线性算符,它的一个天然的表示就是矩阵。
为了表征一个算符,我们需要知道把这个算符作用到所有可能的态上所能产生的结果。
然而,态的个数是无穷多的,所以我们不可能真的把算符作用到所有的态上。
然而,大部分情况下,所有可能的态都可以通过一组基线性表出。
如果算符是线性算符,而且这组基是完备的,也就是任意一个态都可以用这组基线性表示出来,那么只要我们知道算符在这些基上的作用,我们就可以知道算符在所有可能态上的作用。
也就是说,算符在这组基上的作用就可以将这个算符完全表征。
同一个算符在不同基底(即不同表象)下可以表示为不同的矩阵,这些矩阵之间是相似矩阵的关系。
通过这些矩阵,我们可以深入理解算符的性质和行为。
因此,矩阵作为算符的具体数值表示,是理解和研究算符的重要工具。
以上内容仅供参考,建议查阅专业书籍或者咨询专业人士以获取更准确的信息。
第三章算符和力学量算符之宇文皓月创作3.1 算符概述设某种运算把函数u变成函数v,用算符暗示为:3.1-1)u与v中的变量可能相同,也可能分歧。
例如,x,1.算符的一般运算(1)算符的相等:对于任意函数u(2)算符的相加:对于任意函数u,若,则(3)算符的相乘:对于任意函数u2.几种特殊算符(1)单位算符对于任意涵数u1是等价的。
(2)线性算符对于任意函数u与v算符。
(3)逆算符对于任意函数u并不是所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
的线性算符,a为常数。
其解u可暗示为对应齐次方程的通解u。
与分,但如果当a=0述分析可知,是否存在逆算符还与算符所作用的函数有关。
(4)转置算符函数的转置就等于它自己。
3.1-2)也应满足连续性条件:可都等于零](5)转置共轭算符(也称为厄密共轭算符)与厄密算符转置共轭算符通常也是向左作用的算符,同时算符自己要取共义为:3.1-3)可以证明,位置算符与动量算符都是厄密算符。
因x是实数,而,所以。
在任意标积中,因,所以3.1-3)出发,来证(6)幺正算符(7)算符的函数设函数F(A F为:(3.1-4)n3.2算符的对易关系定义算符的泊松(Poisson)括号为:(3.2-1)的。
1.量子力学中基本对易关系在位置表象中,,即在动量表象中可见在位置表象中与动量表象中都得:(3.2-2)如果两个算符所含的独立变量分歧,则这两个算符是对易的。
例yx。
又如,在有心力场中,U(x)所含的变量是rx,y,z(3.2-3)(3.2-4)式就是量子力学中的基本对易关系式。
2.线性算符泊松括号的性质根据量子泊松括号的定义式以及线性算符的定义式不难证明下关系式:(其证明供练习)3.2-5)为常数(3.2-6)为常数(3.2-7)3.其他对易关系(1)角动量算符与位置算符之间的对易关系采取爱因斯坦记号,则上式可写为:3.2-11)Levi-Civita所有角标都是反对称的,即交换任意两个角标,其值反号,例如,数学性质:3.2-12)i ,j 反对称之故。