矩阵分析第三章3.1-2综述
- 格式:ppt
- 大小:453.00 KB
- 文档页数:34
矩阵分析及其应用 3.1矩阵序列定义3.1设矩阵序列{A (k )},其中A(k)=( a (k )) C m n ,当k a j" a u 时,称矩阵序列{A (k)}收敛,并称矩阵 A=( a ij )为矩 阵序列{A (k)}的极限,或称{A (k)}收敛于A,记为lim A (k)A 或 A (k) Ak不收敛的矩阵序列称为发散的。
由定义,矩阵序列 A (k )发散的充要条件为存在 j 使得数列a (k)发散。
类似地,我们可以定义矩阵收敛的 Cauchy 定义 定义3.1'矩阵序列{A (k)}收敛的充要条件为 对任给>0存在N(),当k, l N()时有 ||A (k) A (l)|| <其中||.|为任意的广义矩阵范数。
sin 』)n nsin(k)如果直接按定义我们因为求不出 A (n)的极限从而从而只要I 充分大,则当m, n > l 时就有sin(k)k 2这样A (l)收敛。
定理3.1 A (k) A 的充要条件为 ||A (k) A|| 0证明:利用广义矩阵范数的等价性定理,仅对 范数可以证明。
即c 1ILA (k) A||||A (k) AII C 2 ||A (k) AII 性质 0 若 A (k)A ,则 ||A (k) II IIAII 成立。
性质 1. 设 A (k)A m n ,B (k) B m n , 则A (k)+ B(k) A+ B , ,C 性质 2. 设 A (k)A m n ,B (k )B n l ,贝UA (k)B (k)A B证明:由于矩阵范数地等价性,我们可以只讨论相容的 矩阵范数。
||A (k )B (k) A B|| || A (k) B (k) A B (k)||+||AB (k)A B|||| A (k) A|| ||B (k)||+||A||||B (k) B||例 1 A (n)k m 1k(k 1)相反,由于注意||B(k)|| ||B||,则结论可得。
矩阵分析技术综述矩阵分析技术是一种数学方法,在不同领域的应用中发挥着重要的作用。
矩阵分析技术可以用来建模、求解、优化等。
在机器学习、信号处理、计算机科学等领域都有广泛的应用。
本文将对矩阵分析技术进行综述,包括矩阵的基本概念、特征分解、奇异值分解、矩阵多项式、矩阵分解等。
矩阵的基本概念矩阵是由一个数集合按照一定规律排列成的一个矩形数组。
矩阵通常用方括号或圆括号来表示。
矩阵中每一个元素都可以用下标表示,如$A_{ij}$表示矩阵A中第i行第j列的元素。
矩阵的加、减、乘法以及转置等运算也是基本的矩阵操作,在很多算法中都有应用。
特征分解矩阵的特征分解是指将一个矩阵分解成特定形式的矩阵乘积,其中第一因子是一个特征向量矩阵,第二因子是由特征值构成的对角矩阵。
特征分解是线性代数中的一个重要概念,在很多领域的应用中都有应用。
例如,在机器学习中,特征分解可以用来降维,加快计算速度;在信号处理中,特征分解可以用来提取信号的特征信息。
奇异值分解奇异值分解是将一个矩阵分解成三个矩阵乘积的形式,其中第一因子是一个列正交矩阵,第二因子是一个对角线上的奇异值矩阵,第三因子是一个行正交矩阵。
奇异值分解是矩阵分析中的另一个重要概念。
奇异值分解可以用来求解线性方程组、求解最小二乘问题、降维等。
在图像处理以及信号处理中也有很广泛的应用。
矩阵多项式矩阵多项式是将矩阵看作一个多项式的形式,即是将多项式中的常数项、一次项、二次项以及高次项分别对应为矩阵中的常数矩阵、矩阵本身、矩阵相乘、矩阵的高次幂等。
矩阵多项式可以用来求解矩阵的特征值、特征向量,还可以用来解决自然科学领域相关的微分方程问题、动力学问题等。
矩阵分解矩阵分解是一种将一个矩阵分解为多个子矩阵的技术,这些子矩阵能够同时刻画矩阵的核心信息。
矩阵分解可以分为多种方法,包括LU分解、QR分解、Cholesky分解等等。
在很多领域中,如机器学习、推荐系统、计算机视觉等,矩阵分解都是一个非常重要的技术。
第三章矩阵特征值与特征向量的计算--------学习小结一、本章学习体会本章我们学习了矩阵特征值与特征向量的计算方法即幂法、反幂法、Jacobi方法和QR方法。
下边介绍一下四种方法各自的特点和适用范围。
幂法:主要用于计算矩阵按模最大的特征值及其相应的特征向量;反幂法:主要用于计算矩阵按模最小的特征值及其相应的特征向量;Jacobi法:用于求实对称矩阵的全部特征值和特征向量的方法;QR法:则适用于计算一般实矩阵的全部特征值,尤其适用于计算中小型实矩阵的全部特征值。
归结起来,这四种方法有一个共同的特点,即都是用了迭代的方法来求矩阵的特征值和特征向量。
还有利用用MATLAB自带的解法求解特征值和特征向量,其自带函数Eig即得到结果是虚数也可以算出,并且结果自动正交化。
二、本章知识梳理在工程技术中,计算矩阵的特征值和特征向量主要使用数值解法。
本章将阐述幂法、反幂法、Jacobi 方法、和QR 方法,并且只限于讨论实矩阵的情况。
3.1 幂法和反幂法(1)幂法幂法主要用于计算矩阵的按模为最大的特征值和相应的特征向量,其思想是迭代。
设n ⨯n 实矩阵A 具有n 个线性无关的特征向量,,...,,321n x x x x 其相应的特征值n λλλ...21,,满足如下不等式 n λλλλ≥≥≥> (321)其中i i i x Ax λ= )。
(n i ,...2,1=现在要求出1λ和相应的特征向量。
任取一n 维非零向量0u ,从0u 出发,按照如下的递推公式 1-=k k Au u ),,(...21=k 因n 维向量组n x x x ,...,21线性无关,故对于向量0u ,必存在唯一的不全为零的数组n ααα,...,21,使得n n x x x u ααα...22110++=n k n k k k k k k x A x A x A u A u A Au u ααα+++=====--......22110221=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++n kn n k kn k n n k k x x x x x x 12122111222111......λλαλλααλλαλαλα 设01≠α。