2011年“走进美妙的数学花园”中国青少年数学论坛六年级试题及答案
- 格式:docx
- 大小:338.12 KB
- 文档页数:4
第九届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛决赛注意事项:1. 考生要按要求在密封线内填好考生的有关信息.2. 不允许使用计算器. 小学六年级试卷 一、填空题Ⅰ(每题8分,共32分)1. 循环小数••3010102.1,移动前一个循环点,所得最小的数是 .2. 16个正方形拼成如图的大长方形.已知其中最小的正方形面积是1cm 2,那么大长方形的面积是 cm 2.3. 如果物价下降50%,那么原来买1件东西的钱现在就能买2件.1件变2件增加了100%,这就相当于我手中的钱增值了100%.如果物价上涨25%,相当于手中的钱贬值了 %.4. 有三个各不相同的正整数,将它们两两求和能得到三个不同的和,两两求乘积也能得到三个不同的乘积.已知其中的三个和与两个积从小到大排列依次是:6,8,11,13,18.第三个乘积是 .二、填空题Ⅱ(每题10分,共40分)5. 请将1~9填入下式的9个方框中,每个数字恰好用一次,使得算式成立.(□□□□-□□□)×□÷□=20116. 如图,一个正方形的每条边上的半圆直径都相等,每条边在半圆外的两条线段都分别长8厘米、3厘米.中间阴影面积减去四个角上阴影面积的和,差为 平方厘米.总分8 3 8 3 88====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 7. 一个正整数,它的5倍的约数比它的约数多5个.并且它与10!(即1×2×3×…×10)的最大公约数是35.这个正整数是 .8. 如图,将一个正方体分成了大、小两个长方体.大长方体的表面积是小长方体的2.5倍.大长方体的体积是小长方体的 倍.三、填空题Ⅲ(每题12分,共48分)9. 某次方程式赛车决赛中,A 、B 、C 、D 、E 、F 依次出发.比赛完毕后,他们说:A :我超过4次车,被超过5次;B :最后一圈我换胎时被3辆车超过,再也没追回来;C :我发现在这次比赛过程中,从未出现过“套圈”现象;(一辆车比另一辆车多跑1圈,称为“套圈”)D :E 紧随我冲过终点;E :最终我超过了A 一圈;F :我没被人超车过,在最后一圈时还超过别人的车一次.已知其中恰有一人说谎,那么这次决赛的名次从高到低依次是 .10. 右图的3×3表格已经固定.将4枚相同的棋子放入格子中,每个格子最多放一枚.如果要求每行、每列都有棋子.共有 种不同放法.11. 甲、乙两只精灵分别同时从A 、B 出发,在A 、B 两地间往返行走.甲的速度始终不变.每次甲、乙迎面相遇,乙都将速度提高到相遇前的4倍.甲、乙的前2次迎面相遇都在A 、B 间的某地C ,而当乙第一次回到B 时,甲离C 地60米.A 、B 间的路程是 米.12. 请将1~8这8个自然数填在右图的8个方框中,再在相邻两方格上的圆圈中填入一个数,使得这个数等于这两个方格中左边数的2倍与右边数的差(大减小).设7个圆圈所填数的总和为S . S 的最大值为 .当S 取最大值时,方格中的数共有 种不同的填法.。
陈省身:带你“走进美妙的数学花园”陈省身9岁考入秀州中学预科一年级。
这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。
1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。
第二年,他进入离家较近的扶轮中学(今天津铁路一中)。
陈省身在班上年纪虽小,却充分显露出他在数学方面的才华。
陈省身考入南开大学理科那一年还不满15岁。
他是全校闻名的少年才子,大同学遇到问题都要向他请教,他也非常乐于帮助别人。
一年级时有国文课,老师出题做作文,陈省身写得很快,一个题目往往能写出好几篇内容不同的文章。
同学找他要,他自己留一篇,其余的都送人。
到发作文时他才发现,给别人的那些得的分数反倒比自己那篇要高。
他不爱运动,喜欢打桥牌,且牌技极佳。
图书馆是陈省身最爱去的地方,常常在书库里一呆就是好几个小时。
他看书的门类很杂,历史、文学、自然科学方面的书,他都一一涉猎,无所不读。
入学时,陈省身和他父亲都认为物理比较切实,所以打算到二年级分系时选物理系。
但由于陈省身不喜欢做实验,既不能读化学系,也不能读物理系,只有一条路——进数学系。
数学系主任姜立夫,对陈省身的影响很大。
数学系1926级学生只有5名,陈省身和吴大任是全班最优秀的。
吴大任是广东人,毕业于南开中学,被保送到南开大学。
他原先进物理系,后来因为姜立夫,转到了数学系,和陈省身非常要好,成为终生知己。
姜立夫为拥有两名如此出色的弟子而高兴,开了许多门在当时看来是很高深的课,如线性代数、微分几何、非欧几何等等。
二年级时,姜立夫让陈省身给自己当助手,任务是帮老师改卷子。
起初只改一年级的,后来连二年级的都让他改,另一位数学教授的卷子也交他改,每月报酬10元。
第一次拿到钱时,陈省身不无得意,这是他第一次的劳动报酬啊!陈省身是20世纪重要的微分几何学家,被誉为“微分几何之父”。
早在40年代,陈省身他结合微分几何与拓扑学的方法,完成了两项划时代的重要工作:高斯-博内-陈定理和Hermitian流形的示性类理论,为大范围微分几何提供了不可缺少的工具。
第三届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷一、填空题〔共10道题,每题10分〕1、印度也像中国一样有着灿烂的文化,古代印度有这样一道有趣的数学题:有一群蜜蜂,其中1/5落在牡丹花上,1/3落在桅子花上,这两者的差的三倍,飞向月季花,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去,共有〔〕只蜜蜂.2、在甲容器中装有浓度为%勺盐水90毫升,乙容器中装有浓度为%勺盐水210毫升,如果先从甲、乙容器中倒出同样多的盐水,再将它们分别倒入对方的容器内搅匀, 结果得到浓度相同的盐水, 各倒出了〔〕毫升盐水.3、在下列图中,A为半径为3的..外一点,弦BC// AO且BC=&连结AG阴影面积等于〔〕〔口取〕4、用0〜9这10个数字组成假设干个质数,每个数字都恰好用一次,这些质数的和最小是〔〕.5、从上海开车去南京,原方案中午11: 30到达,但出发后车速提升了1/7, 11点钟就到了,第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提升1/6,到达上海时恰好11: 10,上海、南京两市间的路程是〔〕千米.6、将0〜9这10个数字填入下列图的方框中, 使得等式成立,现在已经填入“3〞,请将其他9个数字填入〔注:首位不能为0〕〔□□□ +□ - □□〕X 3□ +口□ =20057、一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右到左1至6报数,两次都报3的恰有5名,这列士兵最多有〔〕名.8、两个长方形如图摆放, M为AD的中点,阴影局部的面积=〔〕.9、把一个大长方体木块外表上涂满红色后,分割成假设干个棱长为小正方体恰好是2005块,大长方体体积的最小值是〔10、如图,6个3X 2的小方格表拼成了 6X6的大方格表,请在空白处填入的数各不相同,并且原来6个3 X 2的小方格表中的数也各不相同.二、简做题〔共2题,每题10分〕11、某人到花店买花,他只有 24元,本打算买6支玫瑰和3支百合,但钱不够,只好买了 4支玫瑰和5支百合,这样他还剩了 2元多钱,请你算一算,2支玫瑰和3支百合哪个的价格高12、试着把边长为1/2 , 1/3 , 1/4……1/100的这99个小正方形不重叠地放入为1的正方体内,能做到就画第三届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛答案[六年级答案]6、(857+9-64 ) * 30+ 12=2005(859+7-64 ) * 30+12=20051的小正方体,其中恰有两个面涂上红色的1〜6中的数,使得每行、每列中出一种方法,不能, 请说明理由.1、 152、 633、4、5675、趣味数学解题技能展示大赛决赛小学六年级试卷1、x +36 + + X =〔〕.2、如图,/ A+Z B+Z C+Z D+Z E+/F+/G=〔 〕.3、下列图是常见的正方体,我们可以看到三面,共有3X9=27个边长为1的正方形.在这三面上有三条“蛇〞每条由5个连续的正方形〔每两个连续正方形有一条公共边〕组成,不全在一个面上.每两条蛇互不接触 〔两条蛇的方格不能有公共点〕.请将这三条蛇画出来.4、商店一次进货 6桶,重量分别为15千克、16千克、18千克、19千克、20千克、31千克.上午卖出去 2桶,下午卖出去3桶,下午卖得的钱数正好是上午的2倍.剩下的一桶重〔〕千克.5、李白提壶去买洒,遇店加一倍,见花喝一斗.三遇店和花,喝光壶中酒.壶中原有〔〕斗酒.6、假设干个硬币排成下列图.每个硬币所在行的硬币数与所在列的硬币数相减得出一个差〔大数或小数〕,如对于a,差为7-5=2.所有差的总和为〔 〕.7、有10根长度不等的木条,每根长度都是整数,最短的为1,最长的89.现在想用其中的3根拼成一个三角形木架,但是不管怎样都不能拼成.这10根木条中第二长的木条长〔7、67 8、40 9、 282110、三种填法如图:4 3 L5 15 26 1 3 4 1£ 5 3 4 2 2 4 3 6 5 1 3 1 2 4 66 5 4 2 1 343 1 5 2 656 ] 3 A1 6 5 3 4234 2 65 ] W 1 3 43 6 5 d 2 1 33 4 1 5 2 6 3 2 6 1 3 4 16 5 34 243 2 6 3 ] 2 1 34 65 d3 4 2 1 3第六届“走进美妙的数学花园〞 中国青少年数学论坛8、如图,9个3X 3的小方格表合并成一个9X9的大方格表.每个格子中填入1〜9中的一个数,每个数在每一行、每一列中都只出现一次,并且在原来的每个3X3的小方格表中也只出现一次. 10个处所填数的总和是〔〕.5层.每层有一或两套公寓.楼内共有8套公寓.住户J、K、L、M N、.P、Q 9、一栋公寓楼有共8人住在不同公寓里.:〔1〕 J住在两套公寓的楼层. 〔2〕 K住在P的上一层.〔3〕二层只有一套公寓. 〔4〕 M N住在同一层.〔5〕.Q不同层. 〔6〕 Q不住在一层或二层.〔7〕 L住在她所在层公有的公寓里,且不在第一层或第五层. 〔8〕 M在第四层.J住在第〔〕层里.10、甲、乙、丙、丁四位探险者去楼兰古城.每人准备了5天的钦食.但这样不够到达楼兰,再返回原地的需要.他们商议后想出一种方案,可以使一人恰好到达楼兰,而且四人都能平安返回.从出发地到楼兰单程要走〔〕天.11、2006盏亮着的电灯,各有一个拉线开关限制,按顺序编号为1, 2, 3,……,2006.将编号为2的倍数的灯的拉线各拉一下;再将编号为3的倍数的灯的拉线各拉一下,最后将编号为5的倍数的灯的拉线各拉一下.拉完后这着的灯数为〔〕盏.12、下列图是一座迷宫.请画出任意一条从A到B的通道,每个格子至多经过一次,通道上处于同一列的小方格数恰好等于该列上方所标出的数.第四届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛答案[六年级答案1、1002、5403、如下列图6、1024、20 7、55 8、45 9、10、4 11、100412、如下列图1、2、12345678987654321第六届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷填空题〔共12题,第1〜4题每题8分〕计算:314X+628X+X 686=〔〕.将一个长28cm,宽18cm的长方形铁片的四个角各截去一个边长为4cm的正方形,再将此铁片折成一个无盖的长方形容器.容器的容积为〔〕立方厘米.3、一个长方形和一个等腰三角形如图放置,图中六块的面积分别为1, 1, 1, 1, 2, 3.大长方形的面积是4、一个数n的数字中为奇数的那些数字的和记为S〔n〕,为偶数的那些数字的和记为E〔n〕.例如S〔134〕=1+3=4 ,E(134) =4.S(1)+ S(2) + ……+S(100)= ).E (1)+E(2) + ……+E(100)=5、今有A、B两个港口,A在B的上游60千米处.甲、乙两船分别从A、B两港同时出必,都向上游航行.甲船出发时,有一物品掉落水中,浮在水面,随水流漂往下游.甲船出发航行一段后,调头去追落水的物品.当甲船追上落水物品时,恰好和乙船相遇.甲、乙两船在静水中的航行速度相同,且这个速度为水速的6倍.当甲船调头时,甲船已航行〔〕千米.6、一个两位数,数字和是质数.而且,这个两位数分别乘以3, 5, 7之后,得到的数的数字和都仍为质数,满足条件的两位数为〔〕.7、N是一个各位数字互不相等的自然数,它能被它的每个数字整除. N的最大值是〔〕.8、4支足球队单循环赛,每两队都赛一场,每两队都赛一场,每场胜者得3分,负者得.分,平局各得1分. 比赛结束4支队的得分恰好是4个连续自然数.第四名输给第〔〕名.9、如图,正方形ABC曲边长为6, AE=, CF=2长方形EFGH勺面积为〔10、小王8点骑摩托车从甲地出发前往乙地, 8点15追上一个早已从甲地出发的骑车人.小李开大客车从甲地出发前往乙地,8点半追上这个骑车人. 9点整,小王、小李同时到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是〔〕分.二、解做题〔共2题,每题15分〕11、二十多位小朋友围成一圈做游戏.他们依顺时针顺序从小赵报1开始连续报数,但7的倍数或带有7的数都要跳过去不报;报错的人表演一个节目.小明是第一个报错的人,当他右边的同学报90时他错报了91. 如果他第一次报数报的是19,那么这群小朋友共有〔〕人.12、如图,甲、乙两只蜗牛同时从A点出发,甲沿长方形ABC而时针爬彳T,乙沿AO而时针爬行.假设AB=1QBC=14, AO=DO=10且两只蜗牛的速度相同,那么当两只蜗牛间的距离第一次到达最大值时,它们所爬过的路程和为多少第六届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛答案[六年级答案]1、1000002、8003、194、501; 4005、256、677、98673128、二9、33 10、7; 30 11、24 12、788第六届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷、填空题〔共10题,第1〜5题每题8分,第6〜10题每题10分〕1. 1111113 6 10 15 21 287 1111 200 2 3 7 () 工1 1 191,其中〔〕内应填4 5 6 2Ai3 .将循环小数0.081与0.202136相乘,小数点后第2021位是.4 .在右图的每个方框中填入一个适当的数字, 使得乘法□ □□) 2 口口口0 口口口0匚□□□□□□竖式成立.乘积等于5. 自然数N有45个正约数.N的最小值为6. 右图中,AB=3,阴影局部的面积是C 7. M N为非零自然数,且2007M+2021N被7整除.M+N的最小值为8. 从1〜25这25个自然数中,每次取出两个不同的数,使它们的和是4的倍数,的取法.9. 如图,正方体的棱长为6cm,连接正方体其中六条棱的中点形连接其中三个顶点形成一个三角形.正方体夹在六边形与三角.个面,它的体积是3cm___________ 种不同成一个正六边形,而形之间的立体图形10 .由20个边长为1的小正方形拼成的一个4X5长方形中有一格有.图中含有“☆〞的所有长方形〔含正方形〕共个,它们的面积总和是 .二、解做题〔共2题,每题15分〕11 .如图,A,B,C,D,E,F,G,H,I 代表九个各不相同的正整数,A,B,C,D,E,F,G,H,I 的总和为2021,并且每个圆中所填数的和都等于M.12 . 〔1〕 M最大为多少〔2〕 M最小为多少13.13 .如图,一罪犯以每小时100千米的速度驾车从A地向海边的港口B处逃窜.我公安干警在罪犯离开A地10分钟时到达A地,立即以每小时120千米向B追去.如果不发生意外的话,当罪犯赶到B处1分钟后,公安/暴雨区\ 干警才能到达B.但“天网恢恢,疏而不 . •.A C B漏〞,当天适逢暴雨,CB路段泥泞不堪,罪犯在此的车速要减少20%我公安干警凭借优良白练习,车速只减10%结果在离B 还有200米处追上罪犯并将他擒获. 〔1〕求AB距离.〔2〕求AC距离.第六届“走进美妙的数学花园〞中国青少年数学论坛趣味数学解题技能展示大赛决赛答案[六年级答案] 1. 7/4 2. 423. 8 (循环节:016284 )4. 103966 (454*229=103966 )5. 36006.7. 58. 72 (7*6+15+15=72) 9.8; 7210. 48; 360 11. 668; 404 解答:(1)由 2021=(A+B)+C+(D+E+F)+G+(H+I)=3M+C+G, 3M=2021-C-G,要使 M 大,只须 C+G ]、.当 C+G=1+2时,3M=2021-1-2=2005 ,但 2005 不是 3的倍数;16.当 C+G=1+3寸,3M=2021-1-3=2004 , M=668;17.而当 A,B,C,D,E,F,G,H,I 依次为 5,663,1,4,658,6,3,659,9 时可使 M=66812. 13. 14. 15.18 . (2) 2021=(A+B)+(B+C+D)+(D+E+F)+(F+G+H)+(H+I)=5M-(B+D+F+H)19 . 5M=2021+(B+D+F+H)要使M小,须B+D+F+用、.20 .又注意到5 | 2021+(B+D+F+H),从而B+D+F+由2 (mod 5)21 . B+D+F+降1+2+3+4.22 .所以,B+D+F+曲小为为12. M最小为(2021+12) +5=404.23 .而当A,B,C,D,E,F,G,H,I 依次为403,1,401,2,399,3,395,6,398 时可使M=404.24 .综上所述,M的最大值为668, M的最小值为404.25 . 90; 7926 .解答:27 . (1)罪犯,干警正常速度比为100:120=5:6 ,走相同路程,罪犯,干警时间比为6:528 .行AB全程,干警比罪犯少用10—1 = 9(分),那么罪犯行全程需9^ (6-5) X6=54(分)29 .所以,AB 距离100X(54 +60) =90(千米)30 .答:AB距离90千米.31 . (2)下暴雨时,罪犯,干警速度分别为:32 .每小时100 X (1-20%) =80(千米),每小时120X(1-10%) =108(千米).33 .设AC距离x千米,据题意,有34 x 90 x 0.2 10 x 90 x 0.2100 80 60 120 10835 .去分母,得108x+135-1800=90x+10036 .化简,得17 x=134337 . x=7938 .答:AC距离79千米.。
第一讲计算与计数常用公式1、()21321+=++n n n Λ 末项=首项+(项数一1) ×公差;数列和=(首项+末项)×项数÷2;项数=(末项-首项)÷公差+1;公差=(末项-首项)÷(项数-1);2、()()612121222++=+++n n n n Λ 3、()()412121222333+=++=+++n n n n ΛΛ 4、131171001⨯⨯⨯=⨯=abc abc abcabc 6006610016131177877=⨯=⨯⨯⨯=⨯⇒如: 5、()()b a b a b a -+=-226、()()212311321n n n n =+++++++-++++ΛΛ7、1211111=⨯ 12321111111=⨯ 112345654321111112=8、111111111912345679=⨯9、()kn n k n n k +-=+⨯11 10、()()()112231123n n n n n ⨯+⨯++⨯+=++L11、完全平方和公式:()2222b ab a b a ++=+ 12、完全平方差公式:()2222b ab a b a +-=- 循环小数一、把循环小数的小数部分化成分数的规则①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
【1】(2010年迎春杯初赛六年级第1题){{{10015022541112224442010个个个…+…+…+计算结果的数字和是 .【2】(2011年迎春杯初赛六年级第7题) 定义运算:a b a b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥L 144444424444443共颗“”的计算结果是 .【3】(2009年迎春杯初赛六年级第6题) 计算:89109101110111211121378910111178910++++++++-+-=-+-________.【4】(2015年迎春杯初赛六年级第1题) 算式2015143199163135115131⨯⎪⎭⎫ ⎝⎛+++++的计算结果是 .【5】(2009年迎春杯初赛五年级第9题) 5717191155(+)234345891091011⨯+++⨯⨯⨯⨯⨯⨯⨯⨯…= .【6】(2010年迎春杯初赛六年级第3题)满足图中算式的三位数abc 最小值是______.【7】(2012年迎春杯初赛六年级第4题)在右图中的除法竖式中,被除数为 .a b c21⨯【8】(2015年迎春杯初赛六年级第2题)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是 .【9】(2011年迎春杯初赛六年级第15题)已知算式19.1220102=-+-I GHF DE ABC 中的A ,B ,C ,D ,E ,F ,G ,H ,I 表示1~9中各不相同的数字.那么,五位数ABCDE = .【10】(2013年迎春杯初赛六年级第6题)在3×3的九宫格内填入数字1至9(每个数字都恰好使用一次),满足圆圈内的数恰好为它周围四个方格的数字之和,例如A +B +D +E =28,那么ACEGI 组成的五位数是 .【11】(2013年迎春杯初赛六年级第4题)由2、0、1、3四个数字组成(可重复使用)的比2013小的四位数有个.【12】(2015年迎春杯初赛六年级第8题)甲、乙、丙三户人家打算订阅报纸,共有7种不同的报纸可供选择,已知每户人家都订三份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有种不同的订阅方式.【13】(2009年迎春杯初赛六年级第7题)将5枚棋子放入下图编号的4×4表格的格子中,每个格子最多放一枚,如果要求每行,每列都有棋子,那么共有_____种不同放法.1 2 3 45 6 7 89 10 11 1213 14 15 16【14】(2012年迎春杯初赛六年级第10题)如果自然数a 的各位数字之和等于5,那么称a 为“龙腾数”。
第二届―走进美妙的数学花园‖决赛答案三年级:1、10010002、2553、434、略5、略6、127、208、20009、第一个按钮应为右下角的左1按钮10、略11、1512、3四年级1、999800012、20047273、844、8角5、76、267、258、略9、第一个按钮应为右下角的―左1‖10、略11、8412、11五年级1、400600002、2×3³×7×533、5200474、55、656、267、3008、5849、除数是2710、第一个按钮应为第二行第三个11、略12、答案不唯一六年级1、2×3³×7×532、4603、84、180008、149、309996.219996,12999610、略11、或12、48,12七年级1、2、-83、4、1585、496、67、8、209、2或10、6711、12112、略八年级1、142、-23、5404、0或155、5.586、327、1678、1459、-2x10、略11、12012、略第三届―走进美妙的数学花园‖决赛答案三年级:4、略5、1606、2207、略8、429、最上面的―()‖里面画钩10、1205111、(416+8-23)×5=2005或(418+6-23)×5=200512、略四年级1、49042、73、364、35、46、9787、26078、509、810、1203111、略12、答案不唯一,填5,2,6等均可以。
五年级1、20100122、193、0.0184、12.55、能6、20247、20058、25,99、28810、311、略12、答案不唯一六年级1、152、633、714、5675、2886、(857+9-64)×30÷12或(859+7-64)×30÷127、6711、2枝玫瑰高12、略七年级1、192、3、3754、5、16、26057、答案不唯一8、59、2910、16011、2枝玫瑰12、10八年级1、2b-c-12、4:2:33、1104、1605、答案不唯一6、2707、18、135959、1310、11、略12、略第四届―走进美妙的数学花园‖初赛答案[三年级]1.20062.130003.254.只要走出来就行(各地自行决定答案正确与否)5.如下图(答案唯一)6.57.25,15(每一空5分)8.589.如下图之一即可(答案只有这两种)10.10011.4612.7[四年级]1.20062.如下图(答案唯一)3.只要走出来就行(各地自行决定答案正确与否)4.如下图5.56.25,15(每一空5分)7.588.如下图之一即可(答案只有这两种)9.4610.16,12(每一空5分)12.7[五年级]1.20062.63.十分之三或10分之3(不约分的给5分)4.答案如下图,共6种,答对任一种给满分。
第八届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示初赛六年级试卷(A 卷)一、 填空题11、计算:⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛+731911914725=( ) 2、2分、5分的硬币共100枚,价值3元2角,5分币有( )枚。
3、某公司彩电按原价销售,每台获利60元,现在降价销售,结果彩电销售数量增加1倍,获得的总利润增加了0.5倍,每台彩电降价( )元。
4、把从2010到1020之间的自然数按照从大到小的顺序排列起来,形成多位数:201020092008……10211020,从左往右数第999个数字是( )。
5、50个互不相同的正整数,总和是2010,这些数里至多有( )个偶数。
二、填空题6、一群醉鬼聚在一起饮酒,要比一比酒量,先上1瓶各人平分,这酒厉害,喝完后立马倒了几个,于是再来1瓶,余下的人平分,结果又有几个人倒下,现在能坚持的人很少,但一定要决出胜负,不得已又来了1瓶,还是平分,结果全倒了,只听见最后倒下的醉鬼中有人喊:“我正好喝了1瓶.”如果这句话符合实际情况,一共有( )个醉鬼。
7、右图的除法整式中,填有☆的方框所填数字不超过5,被除数是( )8、一袋大米,张飞吃了几天后换关羽吃,刘备还剩半袋大米时也来帮忙吃,吃到还剩20%时离去,结果按计划如期吃完了大米,关羽算了一下自己正好吃了半袋大米,如果刘备不来帮忙,仅由关羽接替张飞一直吃下去,将比计划推迟4天吃完,如果全由张飞一个人吃,则比计划提前8天吃完,已知关羽的饭量是刘备的2倍,原计划吃()天。
9、21个棱长为1厘米的小正方体组成一个立体如右图,它的表面积是()平方厘米。
10、甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇,若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB 中点3千米的地方,已知甲比乙行的快,甲原来每小时行()千米。
填空题311、如图,三角形ABC中,延长BA到D,使DA=AB,延长CA到E,使EA=2AC,延长CB到F使FB=3BC,如果三角形ABC的面积是1,那么三角形DEF的面积是()。
第七届“走进美妙的数学花园”初赛四年级试题解答一、填空题(每题8分,共40分)1、37×37+2×63×37+63×63=_10000_____2、下边的一排方格中,除9、8外,每个方格中的字都表示一个数(不同的字可以表示相同的数字),已22,则“走”+“进”+“数”+“学”+“花”+“园”=_40_3、“走美”商场有下列几种瓶装蜂蜜出售:甲,净重3kg,售价33.99元;乙,净重2kg,售价22.99元;丙,净重500g,售价5.99元,那么,_丙____种蜂蜜最贵, __甲___种蜂蜜最便宜。
4.一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_3,1,2___。
5、某品牌乒乓球拍在北京奥运会后推出一款球拍的促销计划:该球拍每只售价为人民币60元,同时购买者可获赠1张奖券,积累3张奖券可兑换1只球拍。
由此可见,1张奖券价值为__15__元。
二、填空题(第题10分,共50分)6、(09年走美三、四、五年级都考)A,B都是整数,A大于B,且A×B=2009,那么A-B的最大值为_2008___,最小值为__8___。
7、(09年走美三、四、五年级都考)一天,红太狼和灰太狼同时从“野猪林”出发,到“天堂镇”。
红太狼一半路程溜达,一半路程奔跑。
灰太狼一半时间溜达,一半时间奔跑。
如果它们溜达的速度相同,奔跑的速度也相同,则先到“天堂镇”是_灰太狼______。
8、柯南家2008年一年用电10200千瓦时,上半年的月平均用电比下半年的月平均用电少100千瓦时。
柯南家下半年月平均用电为__900_____千瓦时。
9、某校A、B、C三名同学参加“走进美妙的数学花园”,其指导教师赛前预测“A获金牌,B不会获金牌,C不会获铜牌”。
结果出来后,三人之中,一人获金牌,一人获银牌,一人获铜牌,指导教师的预测只有一个人与结果相符。
第三-六届“走进美妙数学花园”六年级决赛试题及答案-第三届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷一、填空题(共10道题,每题10分)1、印度也像中国一样有着灿烂的文化,古代印度有这样一道有趣的数学题:有一群蜜蜂,其中1/5落在牡丹花上,1/3落在栀子花上,这两者的差的三倍,飞向月季花,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去,共有()只蜜蜂。
2、在甲容器中装有浓度为10.5%的盐水90毫升,乙容器中装有浓度为11.7%的盐水210毫升,如果先从甲、乙容器中倒出同样多的盐水,再将它们分别倒入对方的容器内搅匀,结果得到浓度相同的盐水,各倒出了()毫升盐水。
3、在下图中,A为半径为3的⊙O外一点,弦BC∥AO且BC=3。
连结AC。
阴影面积等于()(∏取3.14)4、用0~9这10个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小是()。
5、从上海开车去南京,原计划中午11:30到达,但出发后车速提高了1/7,11点钟就到了,第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高1/6,到达上海时恰好11:10,上海、南京两市间的路程是()千米。
6、将0~9这10个数字填入下图的方框中,使得等式成立,现在已经填入“3”,请将其他9个数字填入(注:首位不能为0)(□□□+□-□□)×3□÷□□=20057、一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右到左1至6报数,两次都报3的恰有5名,这列士兵最多有()名。
8、两个长方形如图摆放,M为AD的中点,阴影部分的面积=()。
9、把一个大长方体木块表面上涂满红色后,分割成若干个棱长为1的小正方体,其中恰有两个面涂上红色的小正方体恰好是2005块,大长方体体积的最小值是()。
10、如图,6个3×2的小方格表拼成了6×6的大方格表,请在空白处填入1~6中的数,使得每行、每列中的数各不相同,并且原来6个3×2的小方格表中的数也各不相同。
第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛注意事项:1.请在密封线内填好有关信息. 总分2.不允许使用手机、计算器等电子设备.小学六年级试卷(A 卷)填空题I(每题8 分,共40 分)1.计算:20140309= .7 ⨯101⨯ 4672.现有含食盐6%的盐水92 千克,如果将盐水的浓度提高到8%,需要再加入盐千克。
3.像2,3,5,7 这样的只能被1 和自身整除的大于1 的自然数叫做质数或者素数。
每一个自然数都能写成若干个(可以相同)质数的乘积,比如,4=2×2,6=2×3,8=2×2×2,9=3×3,10=2×5 等,那么 1938 写成这种形式为 .4.某班有 3 名学生参加数学解题技能展示选拔赛,那么,可能出现的入选情形一共有种.5.“24 点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52 张扑克牌(不包括大小王)中抽取4 张,用这4 张扑克牌上的数字(A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜,游戏规定4 张拍扑克都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q,则可以由算法(2⨯Q)⨯(4 - 3)得到 24. 王亮在一次游戏中抽到了K,9,1,1,他发现K + 9 +1+1 = 24 ,如果将这种能够直接相加得到24 的4 张牌称为“友好牌组”,那么,含有Q 的不同“友好牌组”共有组。
填空题II(每题10 分,共50 分)6.在中国古代数学中,两个形状相同的圆柱以垂直方向互相穿插,如图所示,中间重合部分所构成的几何体称为牟合方盖,从正上方俯视牟合方盖,看到的图形为。
7. 如图所示的图形由1 个大的半圆弧和6 个小的半圆弧围成,已知最大的半圆弧的直径为1,则这个图形的周长为(用圆周率π表示)。
8. 如图所示,已知大圆的半径为2,则阴影部分II 的面积为。
2011年陈省身杯国际青少年数学邀请赛(六年级)试题及答案答题卡(请将答案填入下面的答题卡中)1 2 3 4 56 7 8 9 1011 12 13 14 1516 17 18 19 201.在下面的四个数3.14、3.14%,3.1415和π中,最大的是_________,最小的是_________。
2.一份稿件,甲需要6天才能完成打印,乙需要10天才能完成打印,那么两人合打3天共完成这份稿件的_________。
3.如下图,已知正方形的边长为2cm,则阴影部分的周长为_________cm。
(π取3.14)4.有一个质数,用它分别加上10与4以后,所得和仍为质数,这个质数是_________。
335.如上图表示的长方体(单位:dm ),其长和宽都是3dm ,体积是363dm ,则这个长方体的表面积是_________2dm 。
6.已知A 是大于0的最小自然数,B 是质数中唯一的一个偶数,C 是最小奇质数,C 与D 的和等于70,那么A+B ×C ×D ×(B+C)= _________。
7.一个分数的分子与分母之和是100,将它的分子、分母都减去6后约分得13,那么原来的分数是_________。
8.把同一段铁丝围成一个正方形后,又改围成一个圆形,发现按照面积公式得出的二者面积之和比为4:5,那么在计算圆面积时,圆周率 的取值为_________。
9.一个六位数能被99整除,竖式如图所示,则这个六位数最小可以是_________。
998310.搬运一批货物,甲车单独运要运6次,乙车每次可运72吨,现在甲、乙两车合运,运的次数相同,完成任务时,甲、乙两车搬运货物重量的比是5:3,这批货物共有_________吨。
□□□ □□□ _________□□□ □□□ _________ 011.计算111111111335192124111111111111123234345192021++++++++=⨯⨯⨯⨯⨯⨯⨯⨯ _________。
第三届“走进美妙数学花园”决赛六年级试题一、填空题(共10道题,每题10分)1、印度也像中国一样有着灿烂的文化,古代印度有这样一道有趣的数学题:有一群蜜蜂,其中1/5落在牡丹花上,1/3落在栀子花上,这两者的差的三倍,飞向月季花,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去,共有()只蜜蜂。
2、在甲容器中装有浓度为10.5%的盐水90毫升,乙容器中装有浓度为11.7%的盐水210毫升,如果先从甲、乙容器中倒出同样多的盐水,再将它们分别倒入对方的容器内搅匀,结果得到浓度相同的盐水,各倒出了()毫升盐水。
3、在下图中,A为半径为3的⊙O外一点,弦BC∥AO且BC=3。
连结AC。
阴影面积等于()(∏取3.14)4、用0~9这10个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小是()。
5、从上海开车去南京,原计划中午11:30到达,但出发后车速提高了1/7,11点钟就到了,第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高1/6,到达上海时恰好11:10,上海、南京两市间的路程是()千米。
6、将0~9这10个数字填入下图的方框中,使得等式成立,现在已经填入“3”,请将其他9个数字填入(注:首位不能为0)(□□□+□-□□)×3□÷□□=20057、一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右到左1至6报数,两次都报3的恰有5名,这列士兵最多有()名。
8、两个长方形如图摆放,M为AD的中点,阴影部分的面积=()。
9、把一个大长方体木块表面上涂满红色后,分割成若干个棱长为1的小正方体,其中恰有两个面涂上红色的小正方体恰好是2005块,大长方体体积的最小值是()。
10、如图,6个3×2的小方格表拼成了6×6的大方格表,请在空白处填入1~6中的数,使得每行、每列中的数各不相同,并且原来6个3×2的小方格表中的数也各不相同。
第六届“走进每秒的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛小学六年级试卷一、填空题I(每题8分,共40分)1. 11111111 612203042567290+++++++=解:原式=11111111223349102105-+-++-=-=L L2.一个表面积为56emz的长方体如图切成27个小长方体,这27个小长方体表面积的和是______cm2.解:每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为168cm2.3.将2、4、6、8、12、18、24、36、72填人右边的九宫格,使每行每列及两条对角线上三数的积都相等.每行的三个数的积是______.解:每行三个数的积相等,所以这个积的3次方等于9个数的积,这就个数是:2130、2230、2131、2330、2231、2132、2331、2232、2332,它们的积21839,所以每行上的3个数的积为2633=1728. 4.0.2.0080.A BCC A B••••=,三位数ABC的最大值是多少?解析:2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.5. 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.分析:根据容斥关系:四边形EFGO 的面积=三角形AFC+三角形DBF-白色部分的面积 三角形AFC+三角形DBF=长方形面积的一半即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 所以四边形的面积=60-50=10二、填空题Ⅱ(每题l0分,共50分)6. 如图,ABCD 是正方形.阴影部分的面积为_______.(π取3.14)分析:正方形和它的内切圆的面积比是固定的,即4:π.小正方形的面积等于(3+5)2-4×3×5÷2==34,所以其内切圆的面积等于34÷4×(4-π)=7.317. 用数字l ~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有种组成方法.分析:l ~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.8.N 为自然数,且1+N ,2+N 、……、9+N 与690都有大于l 的公约数.N 的最小值为_______.解析:690=2×3×5×23,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l 的公约数.所以9个数中只有4个奇数,剩下的5个数,有3个3的倍数,1个5的倍数,1个23的倍数,则1+N 、3N +、5N +、7N +、9N +是偶数,剩下的4个数中2+N 、8N +是3的倍数(5各偶数当中只有5N +是3的倍数),还有4N +、6N +一个是5的倍数,一个是23的倍数.剩下的可以用中国剩余定理求解,5N +是2和3的倍数,且相邻两个数中一个是23的倍数,另一个是5的倍数,显然524N +=是最小解,所以N 的最小值为19.9. 50位同学围成一圈,从某同学开始顺时针报数.第一位同学报l ,跳过一人第 三位同学报2,跳过两人第六位同学报3,……这样下去,报到2008为止.报2008的同学第一次报的是_______.分析:将这些学生按报数方向依次编号;1、2、3、……49、50、51……2008,每一个人的编号不唯一,例如编号为2001、1951……101、51的和编号为1的为同一个人,这样第n 次报数的人的编号为()12n n +, 报2008的同学的编号为2017036,他的最小编号为36,我们知道36=1+2+3+4+5+6+7+8,所以报2008的同学第一次报8.10.用l —9填满三角形空格,一个格子只能填人一个数字,使每个数字在每一行,每一列(包括不相连的行,列)及每个粗黑线围成的区域中至多出现一次.分析:解题顺序如第二附图,依照A 、B 、C 、D ……的顺序.三、填空题Ⅲ(每题l2分,共60分)11.A 、B 两杯食盐水各有40克,浓度比是 3:2.在B 中加入60克水,然后倒人A 中________克.再在A 、B 中加人水,使它们均为100克,这时浓度比为7:3.分析:在B中加入60克水后,B盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水的盐质量比仍然为3:2,B中的盐占所有盐的质量的22325=+,但最终状态B中的盐占所有盐的质量的337310=+,也就是说B中的盐减少了32111054-÷=,也就是说从A中倒出了14的盐水,即25克.12.中午l2时,校准A、B、C三钟.当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分.晚上C钟11点时,A钟_____点_____分,B钟_______点_____分.分析:下午A钟6点,B钟5点50分,两钟的运行比为360:350=36:35B钟7点时,C钟7点20分,时钟运行比为420:440=21:22,A:B:C=108:105:110所以C钟11点的时候,A钟10:48,B钟10:30.13.一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有______种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.分析:枚举法,枚举出所有方法:1423、2143、2413、3124、3142、3412、3421、4123、4132、4231、4312、4321.14.机器人A、B从P出发到Q,将Q处的球搬到P点.A每次搬3个,往返一次需l5秒.8每次搬5个,往返一次需25秒.竞赛开始8立即出发,A在B后10秒出发.在竞赛开始后的420秒内,A领先的时间是_______秒,B领先的时间是______秒.(领先指搬到P的球多).分析:对俩机器人的工作情况分别ABA-B:时间0- 25- 40- 50- 55- 70- 75- 85- 100- 115 ……个数差0 -2 1 -4 -1 2 -3 0 -2 1 ……所以从25秒开始,每隔75秒就会出现一个循环,即周期为75秒.前25秒,A、B都没有完成搬运。
ABCD第十一届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示小学六年级试卷(B 卷)一、填空题 I (每题 8 分,共 40 分)1. 183⨯ 279⨯361-182⨯ 278⨯360 的计算结果是(填写 A 、B 、C 、D 四个字母中的一个)A.217017B.207217C.207216D.217016【考点】计算 【难度】☆☆ 【答案】A【分析】若学生对代数比较熟练,可以用(a +1)(b +1)(c +1) = abc + ab + bc + ca + a + b + c +1来减少计算量.2. 假设地球是个均匀的球体(半径 6378 千米),围绕地球赤道正上方上有一圈铁丝,铁丝的周长比地球赤道长 1 米,在赤道和铁丝之间会有一个缝隙,下列动物中,有 种可以安全通过铁丝.①蚂蚁;②蜜蜂;③青蛙;④老鼠;⑤猫;⑥成年奶牛;⑦大象 【考点】圆 【难度】☆☆ 【答案】5【分析】设地球周长为 a 米,铁丝周长为 a +1 米,那么通过c = πd 可知,铁丝的直径比地球直径 1多了 π米,缝隙的高度为该值的一半,约为 16 厘米,所以前四个动物都可以通过.至于猫能不能通过就看出题人想法了.3. 将 0-5 这六个数字中的 4 个数字填入由图的圆圈中,没条线段两端的数字作差(大或小),可以得到 5 个差,这 5 个查恰好为 1-5.在所有满足条件的填法中,四位数 ABCD (首位不能为 0)的最小值 是 .【考点】数字谜 【难度】☆☆ 【答案】1052【分析】让四位数最小,那么 A 为 1,B 为 0,又因为必须有一个差为 5,故而 CD 中有一个是 5.若C 为5,那么D 只能为2 或3;若D 为5,那么C 无解;故而最小值为1052.4.一次考试中,总人数的1又3 人得了3 分,总人数的1又4 人得了4 分,总人数的1又5 人得了3 4 55 分,其余人都得2 分.已知得2 分的人数和得5 分的人数一样多,则有人得了4 分.【考点】比例应用题【难度】☆☆【答案】259【分析】设总人数为60 份,那么3 分的是20 份+3 人,4 分的是15 份+4 人,5 份的是12 份+5 人,剩下2 分的是13 份-12 人,5 分和2 分一样多,所以1 份是17 人,4 分人数为15⨯17 +4=259 人.5.在一个长20 米、宽8 米、深1.6 米的长方体游泳池的四壁及地面贴瓷砖,瓷砖是边长为0.2 米的正方形,共需瓷砖块.【考点】立体几何【难度】☆☆【答案】6240【分析】地面上横向100 块,纵向40 块,共4000 块;四壁高为8 块,共8⨯(100+40)⨯2=2240块,所有的瓷砖为6240 块.二、填空题II(每题10 分,共50 分)6.如右图所示,正方形的边长是20 厘米,阴影部分面积为平方厘米.(π取3.14)【考点】圆【难度】☆☆【答案】400【分析】阴影面积=四个小半圆面积+正方形面积-大圆面积,而方外圆面积是方内圆面积两倍,且两个小半圆可组成一个方内圆,故而阴影部分面积=正方形面积,为400.7.两个相同的玻璃被,都装满了糖水,糖与水的质量比分别是1:7 和1:9,现将这两杯糖水混合,混合后糖水的含糖率是%.【考点】比例【难度】☆☆2 0+13【答案】11.25【分析】设原来每个杯子 40 份液体,那么第一杯 5 份糖,第二杯 4 份糖,混合后共 80 份液体,9 份糖,含糖量为9 ÷80⨯100% =11.25%8. 一个游戏需要 8 人参加,分成红、黄两队,每队各 4 人,一对兄弟来参加这个游戏,他们俩很想被分在同一队,但是谁被编入哪个队是完全随机的,那么这对兄弟被分进同一队的可能性是 【考点】概率 【难度】☆☆ 3【答案】73【分析】不管第一个兄弟在哪个队,该队都剩下 3 个空位,第二个兄弟进入这个空位的概率就是79. 将数字 1-9 填入右图算式的 9 个方格中,每个数字只能用一次,算式中和的最大值为.【考点】数字谜 【难度】☆☆ 【答案】3972【分析】让和最大,则和的百位为 9,若和的十位不为 8,那么第二个加数百位最大为 7,但是十位无法提供进位;所以和的十位最大为 7.此时第二个加数百位为 8.第三个加数千位为 3,剩下 1、2、4、5、6.若个位没有进位,只能是2 +1+ 2 = 5 ,那么十位无法凑出和为 7.故而个位有进位, 满足要求的最大的和为12 + 804 + 3156 = 3972.10. 军区食堂晚饭需用 1000 斤大米和 200 斤小米,军需员到米店后发现米店正在促销.“大米 1 元 1斤,每购 10 斤送 1 斤小米(不足 10 斤部分不送);小米 2 元 1 斤,每购 5 斤送 2 斤大米(不足 5斤部分不送).军需员至少要付 元钱才能买够晚饭需用的米. 【考点】列方程解应用题、估算 【难度】☆☆☆☆ 【答案】1168【分析】仔细观察两种米的促销方法,会发现其折扣本质是相同的(如果把“10 斤大米”和“5斤小米”看做一份促销品的话,那么 10 元钱能买到的折扣都是 1 5份促销品),故不存在多买大米好还是多买小米好的问题,只需凑足所需重量,就一定是最省的方法;设买大米 x 斤,小米 y 斤,列⎨ ⎧x + 2y ≤ 1000 方程组:⎪ 51 来估算大米与小米应买多少斤;得到大致重量:大米买 950 斤,小米买 105⎪ x + y ≤ 200 ⎩10斤,此时花了 1160 元,已有 992 斤大米和 200 斤小米,再用 8 元买 8 斤大米即可,最少用 1168 元 (构造方法不唯一).三、填空题 III (每题 12 分,共 60 分)11. 定义a &b = (a + 2)(b + 2) - 2算式1⨯3⨯5⨯7⨯9⨯11⨯13- (1&3&5&7 &9 &11)的计算结果是 .【考点】类比与猜想 【难度】☆☆☆ 【答案】2【分析】1&3 = 3⨯5 - 2 , 1&3&5 = (1⨯3⨯5 - 2 + 2)⨯7 - 2 =1⨯3⨯5⨯7 - 2 ……以此类推,1&3&5&7 &9&11 =1⨯3⨯5⨯7⨯9⨯11⨯13- 2,故原式答案为 2.12. 右图中共能数出个三角形.【考点】几何计数 【难度】☆☆☆☆ 【答案】76【分析】单个的三角形有 24 个,两个小三角形构成的由 24 个,三个小三角形构成的有 12 个,一个外围三角形加 3 个内圈三角形构成的有 12 个,加上两个六边形里各有两个正三角 形,共 76 个.13. 甲乙两船从一条和的 A 、B 两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,水速为乙船静水速度的 10%,两船在距离中点 10 千米处相遇.A 、B 两个码头间的距离为千米.【考点】流水行船 【难度】☆☆☆ 【答案】110【分析】设水速为 1,则乙船静水速度为 10,甲船静水速度为 12.若乙顺水甲逆水则两船在中点相遇,不符合要求,故而甲是顺水,甲速度为 13,乙速度为 9.若全程为 22 份,相遇时甲走了 13 份,故 2 份为 10 千米,全程为 110 千米.14.一个四位数,他最小的8 个约数的和是43,那么这个四位回文数是.(回文数例如:1111、4334、3210123)【考点】约数、整除性质【难度】☆☆☆☆☆【答案】2772【分析】由整除性质,4 位回文数一定是11 的倍数.若没有约数2,那么不可能满足最小8 个约数和为43;若没有约数3,1+ 2 + 4 + 5 + 7 + 8 +10 +11 = 48 > 43 ,也不满足要求.若没有约数4,1+ 2 + 3+ 5 + 6 + 7 + 9 +10 = 43 ,但是同时有约数7、9、10、11 的数只能是6930,也不满足回文数.所以约数1、2、3、4、6、11 是必须存在的.若有约数5,则一定有约数10,这个四位数个位是0,不可能是回文数.所以最小的8 个之和为43,只有1、2、3、4、6、7、9、11 这一种情况满足要求.他们最小公倍数为2772,符合回文数要求,2772 的其他倍数也不是回文数.15.小俊掷骰子游戏,刚开始他站在起点格(如图),如果他掷出1 至5 点,掷出几点就前进几格,如果他掷出 6 点或某次前进后超出终点格,则立即返回起点格;若小俊掷了四次恰好到达终点格,掷骰子的顺序有种可能.起 1 2 3 4 5 6 7 8 9 终【考点】类比与猜想【难度】☆☆☆【答案】92【分析】注意终点是10 号格.从起点出发,两次即到达终点的方法有5+5 一种.若恰好三次到达,可以第一次扔6,有1 种情况;也可以第一次不扔6,第一次扔1 有2 种、扔2 有3 种,扔3 有4种、扔4 有5 种,扔5 有4 种,共19 种.恰好四次到达,可以第二次扔后爆掉,第一次可以扔1到5 五种,也可以在第一次扔出6 爆掉,转化为3 次到达的情况,有19 种,共1+19+5+19=44 种.。
“走进美妙数学花园”决赛六年级试题一、填空题(共12题,第1~4题每题8分)1、计算:314×31.4+628×68.6+68.6×686=()。
2、将一个长28cm,宽18cm的长方形铁片的四个角各截去一个边长为4cm的正方形,再将此铁片折成一个无盖的长方形容器。
容器的容积为()立方厘米。
3、一个长方形和一个等腰三角形如图放置,图中六块的面积分别为1,1,1,1,2,3。
大长方形的面积是()。
4、一个数n的数字中为奇数的那些数字的和记为S(n),为偶数的那些数字的和记为E(n)。
例如S(134)=1+3=4,E(134) =4。
S(1)+ S(2) +……+S(100)= ()。
E (1)+E(2) +……+E(100)= ()。
5、今有A、B两个港口,A在B的上游60千米处。
甲、乙两船分别从A、B 两港同时出必,都向上游航行。
甲船出发时,有一物品掉落水中,浮在水面,随水流漂往下游。
甲船出发航行一段后,调头去追落水的物品。
当甲船追上落水物品时,恰好和乙船相遇。
已知甲、乙两船在静水中的航行速度相同,且这个速度为水速的6倍。
当甲船调头时,甲船已航行()千米。
6、一个两位数,数字和是质数。
而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数,满足条件的两位数为()。
7、N是一个各位数字互不相等的自然数,它能被它的每个数字整除。
N的最大值是()。
8、4支足球队单循环赛,每两队都赛一场,每两队都赛一场,每场胜者得3分,负者得0分,平局各得1分。
比赛结束4支队的得分恰好是4个连续自然数。
第四名输给第()名。
9、如图,正方形ABCD的边长为6,AE=1.5,CF=2。
长方形EFGH的面积为()。
10、小王8点骑摩托车从甲地出发前往乙地,8点15追上一个早已从甲地出发的骑车人。
小李开大客车从甲地出发前往乙地,8点半追上这个骑车人。
9点整,小王、小李同时到达乙地。
已知小王、小李、骑车人的速度始终不变。
“走进美妙数学花园”决赛六年级试题共12题,每题10分1、1.25×17.6+36÷0.8+2.64×12.5=()。
2、如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()。
3、下图是常见的正方体,我们可以看到三面,共有3×9=27个边长为1的正方形。
在这三面上有三条“蛇”。
每条由5个连续的正方形(每两个连续正方形有一条公共边)组成,不全在一个面上。
每两条蛇互不接触(两条蛇的方格不能有公共点)。
请将这三条蛇画出来。
4、商店一次进货6桶,重量分别为15千克、16千克、18千克、19千克、20千克、31千克。
上午卖出去2桶,下午卖出去3桶,下午卖得的钱数正好是上午的2倍。
剩下的一桶重()千克。
5、李白提壶去买洒,遇店加一倍,见花喝一斗。
三遇店和花,喝光壶中酒。
壶中原有()斗酒。
6、若干个硬币排成下图。
每个硬币所在行的硬币数与所在列的硬币数相减得出一个差(大数或小数),如对于a,差为7-5=2。
所有差的总和为()。
7、有10根长度不等的木条,每根长度都是整数,最短的为1,最长的89。
现在想用其中的3根拼成一个三角形木架,但是不管怎样都不能拼成。
这10根木条中第二长的木条长()。
8、如图,9个3×3的小方格表合并成一个9×9的大方格表。
每个格子中填入1~9中的一个数,每个数在每一行、每一列中都只出现一次,并且在原来的每个3×3的小方格表中也只出现一次。
10个“☆”处所填数的总和是()。
9、一栋公寓楼有5层。
每层有一或两套公寓。
楼内共有8套公寓。
住户J、K、L、M、N、O、P、Q共8人住在不同公寓里。
已知:(1)J住在两套公寓的楼层。
(2)K住在P的上一层。
(3)二层只有一套公寓。
(4)M、N住在同一层。
(5)O、Q不同层。
(6)Q不住在一层或二层。
(7)L住在她所在层公有的公寓里,且不在第一层或第五层。
(8)M在第四层。
J住在第()层里。
“走进美妙数学花园”的数学家教育家身体力行“数学好玩”的老顽童陈省身更多专业、稀缺文档请访问——搜索此文档,访问上传用户主页~“走进美妙数学花园”的数学家教育家身体力行“数学好玩”的老顽童陈省身“走进美妙数学花园”的数学家教育家身体力行“数学好玩”的老顽童陈省身10年前,2002年8月,在北京举行的国际数学家大会期间,91岁高龄的数学大师陈省身(1911.10.28―2004.12.3)应邀为以“走进美妙数学花园”为主题的中国少年数学论坛题词,他潇洒地挥毫写下了“数学好玩”4个大字。
陈省身从小就觉得数学好玩。
他9岁考入浙江嘉兴秀州中学预科一年级,已能够做相当复杂的算术题了。
11岁随父举家迁居天津,第二年进入扶轮中学(今天津铁路一中)。
陈省身在班上年龄虽小,却充分显示出了他的数学才华。
1926年,陈省身考入南开大学时,还不到15岁。
南开大学数学系主任姜立夫是著名的几何学大师,他给数学系1926级的全部5名学生开了许多门当时看来是很高深的课,如微分几何学、非欧几何学等。
陈省身感觉好玩极了~这时他觉得数学好玩,是因为他懂得了数学的奥秘,掌握了数学的方法,证题顺理成章,思路一泄如注。
在南开大学学习期间,陈省身还为老师姜立夫当助教,改起低年级甚至同年级同学的作业来,毫不费力。
1930年,19岁的陈省身毕业于南开大学,即到清华大学当助教。
翌年考入清华大学研究院,成为中国国内最早的数学研究生之一。
在中国微分几何学先驱孙光远指导下,发表了第一篇研究论文,内容是关于射影微分几何的。
1932年4月应邀来华讲学的汉堡大学教授布拉希克对陈省身影响也不小,使他确定了以微分几何为以后的研究方向。
1934年,23岁的陈省身毕业于清华大学研究院。
同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学。
在布拉希更多专业、稀缺文档请访问——搜索此文档,访问上传用户主页~克研究室他完成了博士论文,研究的是嘉当方法在微分几何中的应用。
第五届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛小学六年级试卷填空题(共15题,满分150.第1~4题每题8分,第5~8题每题10分, 第9~12题每题12分, 第13~15题每题10分)1.2007×2007×……×2007(2008个2007)的个位数字是 .2.分数73,94,3517,203101,301151中最大的一个是: 。
3.2×3的棋盘上有5个棋子及1个空格.每步可将1个棋子移动到旁边的空格(横向或纵向).经过若干步移动后,由图1变到图2.A = ,B = .4.梯形ABCD 中,AE 与DC 平行,S △ABE =15,S △BCF = .5.1000千克葡萄含水率为96.5%.一周后含水率降为96%.这些葡萄的重量减少了 千克.6.计算:=⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++173327134173327125134173327173327125 . 7.如图,请在下图每个方框中填入一个数字,使乘法竖式成立.8.从1,2,3,4,…,2007中取N 个不同的数,取出的数中任意三个的和能被15整除.N 最大为 .9.一个自然数,在3进制中的数字和是2007.它在9进制中的数字和最小是 ,最大是 .图1 图210.将1、3、5、7、9填入等号左边的5个方框中, 2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最小为 .□÷□+□+□□=□÷□+□□11.如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体.这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比: : : .12.甲乙两船,在静水中速度都是每时30千米.一次甲乙两船分别从A,B 两码头同时出发相向而行,到途中的C 地后返回.结果乙比甲先到达C 地0.5小时,而乙返回B 码头后1.5小时甲才返回A 码头.已知A 在B 的上游,且水速为每时2千米.AB 的距离 为 千米.13.101001981961101816141211⨯⎪⎭⎫ ⎝⎛+-++-+-+- 的整数部分是 .14.称能表示成1+2+3+…+K 的形式的自然数为三角数.有一个四位数N ,它既是三角数,又是完全平方数.N = .15.如图,27个单位正方体拼成大正方体,沿着面上的格线,从A 到B 的最短路线共有 条.第六届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛决赛小学六年级试卷一、填空题(共10题,第1~5题每题8分,第6~10题每题10分) 1.28121115110161311++++++= . 2.⎥⎦⎤⎢⎣⎡-++⨯) (17131212007=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛++2119615141,其中( )内应填 .3. 将循环小数∙∙180.0与∙∙683002.0相乘,小数点后第2008位是 .4. 在右图的每个方框中填入一个适当的数字,使得乘法竖式成立.乘积等于 .5. 自然数N 有45个正约数.N 的最小值为 .6. 右图中,AB=3,阴影部分的面积是 .7. M 、N 为非零自然数,且2007M+2008N被7整除.M+N的最小值为 .8. 从1~25这25个自然数中,每次取出两个不同的数,使它们的和是4的倍数,共有___________种不同的取法.9. 如图,正方体的棱长为6cm ,连接正方体其中六条棱的中点形成一个正六边形,而连接其中三个顶点形成一个三角形.正方体夹在六边形与三角形之间的立体图形有 个面,它的体积是 cm 3. 10. 由20个边长为1的小正方形拼成的一个4×5长方形中有一格有“☆”.图中含有“☆”的所有长方形(含正方形)共 个,它们的面积总和是 .二、解答题(共2题,每题15分)11. 如图,A,B,C,D,E,F,G ,H,I 代表九个各不相同的正整数, A,B,C,D,E,F,G,H,I 的总和为2008,并且每个圆中所填数的和都等于M .(1)M 最大为多少?(2)M 最小为多少?12. 如图,一罪犯以每小时100千米的速度驾车从A 地向海边的港口B 处逃窜.我公安干警在罪犯离开A 地10分钟时到达A 地,立即以每小时120千米向B 追去.如果不发生意外的话,当罪犯赶到B 处1分钟后,公安干警才能到达B .但“天网恢恢,疏而不漏”,当天适逢暴雨,CB 路段泥泞不堪,罪犯在此的车速要减少20%,我公安干警凭借优良的训练,车速只减10%,结果在离B 还有200米处追上罪犯并将他擒获.(1)求AB 距离.(2)求AC 距离.2009年第七届走美六年级初赛试题注意事项:1、考生要按要求在密封线内填好考生的有关信息2、不允许使用计算器。
第十届“走进美妙数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1.考生按要求在密封线内填好考生的有关信息.2.不允许使用计算器.小学六年级试卷(B卷)一、填空题Ⅰ(每题8分,共40分)1.712的分母增加36后,要使分数的大小不变,分子应加______。
2.在“庆祝六一”征文比赛活动中,某校六年级有80人获一、二、三等奖。
其中获三等奖的人数占六年级获奖人数的62.5%,获一、二等奖的人数比是1∶4。
六年级获二等奖共有______人。
3.把一些糖果平均分给10个小朋友。
其中有两个小朋友又把他们得到的所有糖果,都分给了其余的小朋友;结果,其余的小朋友每人多了3颗糖果。
一共有_______颗糖果。
4.在一个正方形里面画一个最大的圆,这个圆的面积是正方形面积的_______%。
(π取3.14)5.如果物价下降50%,那么原来买1件东西的钱现在就能买2件。
1件变2件增加了100%,这就相当于我手中的钱增值了100%。
如果物价上涨25%,相当于手中的钱贬值了_____%。
二、填空题Ⅱ(每题10分,共50分)6.算式22221949201219492012194920121949201219491949195019501951195120112011++++++++⨯⨯⨯⨯⋯⋯的计算结果是_______。
7.如图,大等边三角形中放了三个面积都是30平方厘米的小正六边形。
大三角形的面积是______平方厘米。
8.如果1112012+=A B(A 、B 均为自然数),那么B 最大是______。
9.有五个互不相等的非零自然数。
如果其中一个剑少45,另外四个数都变成原先的2倍,那么得到的仍然是这五个数。
这五个数的总和是______。
10.甲、乙两车都从A 地到B 地。
甲车比乙车提前30分钟出发,行到全程三分之一时,甲车发生了故障,修车花了15分钟,结果比乙车晚到B 地15分钟。
甲车修车前后速度不变,全程为300千米。