电磁兼容性整改的几种方法
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
_EMC_整改常见措施EMC整改常见措施EMC(Electromagnetic Compatibility,电磁兼容性)是指电子设备在特定的电磁环境中,能够正常工作而不对周围的电子设备或电磁环境产生不可接受的干扰。
为了确保产品符合EMC标准,需要采取一系列的整改措施。
下面是一些常见的EMC整改措施,以帮助您满足EMC要求。
1. 设计阶段的整改措施:- 电路设计:合理布局电路,减少电磁辐射和敏感度。
使用屏蔽和滤波器来降低电磁辐射和抑制干扰。
- 接地设计:确保良好的接地,减少接地回路的电阻和电感,提高抗干扰能力。
- 信号线布线:避免信号线与电源线、高功率线路等相交或平行布线,减少互相干扰。
- 散热设计:合理设计散热系统,减少电子设备过热引起的干扰。
- PCB设计:采用多层板设计,合理布局和连接,减少电磁辐射和敏感度。
- 地域选择:选择电磁环境较好的地域进行产品测试和生产。
2. 材料选择的整改措施:- 屏蔽材料:选择具有良好屏蔽性能的材料,如金属屏蔽罩、导电涂层等,减少电磁辐射和敏感度。
- 滤波器:选择合适的滤波器,用于抑制干扰信号和滤除噪声。
- 导电胶水:使用导电胶水固定电子元件,提高接地效果。
3. 测试和验证的整改措施:- 辐射测试:使用EMC测试设备对产品进行辐射测试,确保产品在规定的频率范围内的电磁辐射水平符合标准要求。
- 敏感度测试:使用EMC测试设备对产品进行敏感度测试,确保产品在规定的电磁环境下能正常工作。
- 抗干扰测试:使用EMC测试设备对产品进行抗干扰测试,确保产品能在干扰环境下正常工作。
- 标准符合性验证:对产品进行全面的标准符合性验证,确保产品满足EMC 标准要求。
4. 文档整改措施:- EMC测试报告:编写详细的EMC测试报告,包括测试方法、测试结果和结论,以便于后续的整改和验证。
- EMC设计指南:编写EMC设计指南,指导产品设计和开发人员在设计阶段遵循EMC要求。
总结:以上是一些常见的EMC整改措施,通过合理的电路设计、材料选择、测试和验证以及文档整改,可以提高产品的电磁兼容性,确保产品在电磁环境中的正常工作并减少对周围设备的干扰。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对周围的其他设备或者系统产生不可接受的干扰。
在实际应用中,由于各种原因,电子设备可能会存在电磁兼容性问题,需要进行整改措施。
二、EMC整改常见措施1. 设备屏蔽设备屏蔽是一种常见的EMC整改措施,通过在设备外壳或者电路板上添加屏蔽材料,有效地阻隔电磁辐射和电磁感应。
屏蔽材料可以是金属盖板、金属屏蔽罩等,能够将电磁波反射、吸收或者散射,从而达到减少干扰的效果。
2. 地线设计地线设计是EMC整改中的关键措施之一。
良好的地线设计可以有效地抑制电磁辐射和电磁感应,减少电磁干扰。
在地线设计中,需要合理规划地线的走向和布局,确保地线的连接良好,并避免浮现地线回流、地线环路等问题。
3. 滤波器应用滤波器是一种常用的EMC整改措施,通过滤除电源线上的高频噪声,减少电磁辐射和电磁感应。
滤波器可以分为入线滤波器和出线滤波器,分别用于滤波电源输入端和输出端的电磁干扰。
合理选择并应用滤波器,可以有效地提高设备的抗干扰能力。
4. 等效电路仿真等效电路仿真是一种常见的EMC整改手段,通过建立设备的等效电路模型,分析电磁辐射和电磁感应的机理,预测设备在不同工作条件下的电磁兼容性。
通过仿真分析,可以找出设备中存在的电磁兼容性问题,并采取相应的措施进行整改。
5. 电磁屏蔽间隙控制电磁屏蔽间隙控制是一种常用的EMC整改措施,通过控制设备外壳或者电路板之间的间隙,减少电磁波的穿透和辐射。
合理设计和控制屏蔽间隙,可以有效地提高设备的抗干扰能力,减少电磁辐射和电磁感应。
6. 接地设计合理的接地设计是EMC整改中的重要措施之一。
通过良好的接地设计,可以减少电磁辐射和电磁感应,提高设备的抗干扰能力。
在接地设计中,需要注意接地回路的布局、接地电阻的选择和接地线的连接方式等方面。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在特定的电磁环境中,设备、系统或者产品能够在不产生或者接收到不可接受的电磁干扰的情况下正常工作的能力。
为了确保设备的正常运行,避免电磁干扰对其他设备或者系统造成影响,需要进行EMC整改。
二、EMC整改的目的EMC整改的目的是消除或者减少设备、系统或者产品在电磁环境中的电磁干扰,提高其电磁兼容性,确保其正常工作并符合相关标准和规定。
三、EMC整改常见措施1. 设备屏蔽通过在设备或者系统中增加屏蔽结构,如金属外壳、屏蔽罩等,来阻挡电磁波的传播,减少电磁辐射和接收到的干扰信号。
2. 滤波器的应用在设备的电源输入端或者信号输入输出端增加适当的滤波器,用于滤除电源线上的高频噪声和信号线上的干扰信号,保证设备的正常工作。
3. 地线设计合理设计设备的地线系统,确保设备的接地良好,并避免接地回路中浮现过大的回流电流,减少电磁辐射和接收到的干扰信号。
4. 电磁屏蔽室对于特殊要求的设备或者系统,可以建立电磁屏蔽室,将设备置于屏蔽室中进行测试和调试,避免电磁干扰对外界的影响。
5. 线缆布线合理规划设备的线缆布线,避免线缆之间的交叉干扰和电磁辐射,采用屏蔽线缆或者增加线缆的距离来降低干扰。
6. 抑制电磁辐射通过合理的电路设计和信号处理,减少电路中的高频振荡和电磁辐射,降低设备对外界的电磁干扰。
7. 抑制电磁感应通过合理的电路设计和信号处理,减少设备对外界电磁场的感应,降低设备对外界电磁干扰的敏感度。
8. 场强测量和测试进行EMC整改后,需要进行场强测量和测试,验证设备的电磁兼容性是否符合要求,并对不符合要求的地方进行进一步的优化和调整。
9. 电磁兼容性培训对设备的操作人员进行电磁兼容性培训,提高其对电磁干扰和电磁辐射的认识,加强设备的正确使用和维护,减少电磁干扰的发生。
四、EMC整改的效果评估EMC整改后,需要对设备进行效果评估,包括电磁辐射和电磁感应的测试,验证整改措施的有效性,并根据测试结果进行进一步的优化和改进。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对周围环境和其他设备造成干扰的能力。
EMC问题的存在会导致设备之间的相互干扰,甚至影响其正常运行。
因此,为了保证设备的正常工作和电磁环境的稳定,需要进行EMC整改。
二、EMC整改的目的EMC整改的目的是通过采取一系列措施,消除或降低设备之间的电磁干扰,确保设备的正常运行和电磁环境的稳定。
具体措施如下:1. 设备外壳屏蔽在EMC整改过程中,可以通过在设备外壳上添加屏蔽层来减少电磁辐射和接收到的干扰信号。
屏蔽层可以采用金属材料,如铝或铜,来提供良好的屏蔽效果。
2. 电磁波滤波器的使用电磁波滤波器是一种用于滤除电磁波中特定频率成分的设备。
在EMC整改中,可以根据设备的工作频率和电磁辐射特点选择合适的滤波器。
滤波器的使用可以有效地降低电磁干扰和抑制电磁辐射。
3. 地线和屏蔽线的优化地线和屏蔽线是EMC整改中重要的一环。
通过优化设备的地线和屏蔽线布局,可以减少电磁干扰的传导和辐射。
合理的地线和屏蔽线布局可以有效地提高设备的抗干扰能力。
4. 电磁辐射测试和测量EMC整改过程中,需要进行电磁辐射测试和测量,以评估设备的辐射水平和干扰程度。
通过测试和测量,可以确定设备存在的问题,并采取相应的措施进行整改。
5. 电磁兼容性设计优化在设备的设计阶段,应该考虑到EMC问题,采取相应的设计优化措施。
例如,合理选择元器件,优化电路布局,增加滤波电路等,以提高设备的电磁兼容性。
6. 可靠性测试和验证EMC整改后,还需要进行可靠性测试和验证,以确保设备在各种工作条件下仍然具备良好的电磁兼容性。
通过可靠性测试和验证,可以评估设备的抗干扰能力和稳定性。
三、总结EMC整改是保证设备正常工作和电磁环境稳定的重要环节。
通过采取一系列措施,如设备外壳屏蔽、电磁波滤波器的使用、地线和屏蔽线的优化、电磁辐射测试和测量、电磁兼容性设计优化以及可靠性测试和验证,可以消除或降低设备之间的电磁干扰,确保设备的正常运行。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在电子设备和系统中,各种电磁辐射源和敏感元件之间相互兼容,能够在规定的电磁环境下正常工作,而不产生不可接受的电磁干扰或电磁敏感性。
二、整改目的为了确保电子设备和系统的正常运行,减少电磁干扰和敏感性问题,需要采取相应的整改措施。
三、整改常见措施1. 设计措施1.1 电磁防护屏蔽设计:采用金属屏蔽罩、屏蔽盒等措施,将敏感元件包裹在屏蔽内,减少电磁辐射和敏感性。
1.2 电磁隔离设计:通过合理布局电子设备和系统,避免电磁辐射源与敏感元件之间的直接接触,减少干扰。
1.3 电磁兼容性滤波设计:在电源输入端和信号输入输出端设置滤波器,滤除高频噪声和电磁辐射,保护敏感元件。
2. 材料选择2.1 电磁屏蔽材料:选择具有良好屏蔽效果的金属材料,如铝、铜等,用于制作屏蔽罩、屏蔽盒等。
2.2 电磁兼容性滤波材料:选择具有良好滤波性能的材料,如磁性材料、陶瓷材料等,用于制作滤波器。
3. 线路布局3.1 避免并行布线:将信号线和电源线分开布置,避免并行走向,减少互相干扰。
3.2 使用屏蔽线缆:对于高频信号线和敏感信号线,采用屏蔽线缆,减少电磁辐射和干扰。
3.3 保持距离:在布线过程中,保持敏感元件和电磁辐射源之间的一定距离,减少干扰。
4. 地线设计4.1 单点接地:将所有电子设备和系统的地线连接到同一个接地点,减少地回路的干扰。
4.2 地线的短而粗:地线的长度应尽量短,截面积应尽量大,减小地线的电阻和电感。
5. 整改测试5.1 电磁兼容性测试:在整改完成后,进行电磁兼容性测试,检测电子设备和系统的电磁辐射和敏感性是否符合规定标准。
5.2 效果评估:根据测试结果,评估整改效果,如有需要,进行进一步的调整和优化。
四、结论通过采取上述常见的EMC整改措施,可以有效减少电磁干扰和敏感性问题,保证电子设备和系统的正常运行。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在电子设备中,各种电子设备能够在电磁环境中共存并正常工作的能力。
EMC问题的存在可能导致电子设备之间的相互干扰,甚至对人体健康和环境造成潜在风险。
因此,为了确保电子设备的正常运行和人体健康的安全,需要采取一系列的整改措施来解决EMC问题。
二、EMC整改常见措施1. 设备屏蔽设备屏蔽是一种常见的EMC整改措施,通过在电子设备内部或外部添加屏蔽材料或屏蔽结构,阻挡或减少电磁辐射的传播和干扰。
例如,在电子设备的外壳上添加金属屏蔽罩,可以有效地屏蔽电磁波的辐射和接收,降低干扰。
2. 地线设计良好的地线设计是EMC整改中的重要环节。
地线的作用是提供电子设备的电流回路,减少电磁辐射和接收的干扰。
合理的地线布局和连接可以有效地降低电磁辐射和接收的干扰。
例如,使用大面积的地面层、规划合理的地线走向、减少地线的长度等措施。
3. 滤波器安装滤波器的安装是一种常见的EMC整改措施,可以用于减少电子设备中电源线上的电磁干扰。
滤波器可以通过滤除高频噪声,使电源线上的电压和电流波形更加平滑,降低干扰。
例如,安装电源线滤波器、信号线滤波器等。
4. 电磁隔离电磁隔离是一种常见的EMC整改措施,通过隔离和分离电子设备之间的电磁辐射和接收,减少干扰。
例如,在电子设备之间设置隔离屏蔽墙、隔离屏蔽罩等,使电磁波无法直接传播和干扰其他设备。
5. 接地设计良好的接地设计是EMC整改中的重要环节,可以有效地降低电磁辐射和接收的干扰。
合理的接地设计可以确保设备的接地电阻低,提供良好的电流回路,减少干扰。
例如,使用低阻抗的接地线、规划合理的接地网等。
6. 电磁波屏蔽电磁波屏蔽是一种常见的EMC整改措施,通过在电子设备周围设置屏蔽结构或屏蔽材料,阻挡或减少电磁波的传播和干扰。
例如,在电磁辐射较强的区域周围设置金属屏蔽板,可以有效地屏蔽电磁波的辐射和接收,降低干扰。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在特定的电磁环境下,能够正常工作并与其他设备共存的能力。
在实际应用中,往往会出现电磁辐射、抗干扰等问题,需要采取相应的整改措施来保证设备的正常运行。
二、常见的EMC整改措施1. 设计合理的电磁屏蔽结构:通过使用合适的屏蔽材料、设计合理的屏蔽结构,可以有效地减少电磁辐射和电磁干扰。
例如,在电子产品的外壳和电路板之间添加屏蔽罩,以阻隔电磁波的传播。
2. 优化电路布局:合理的电路布局可以减少电磁辐射和抗干扰能力。
通过减少信号线的长度、增加信号线之间的间距、避免信号线与电源线的交叉等方式,可以降低电磁辐射和干扰。
3. 选择合适的滤波器:滤波器是一种常用的EMC整改措施,可以用来滤除电源线上的高频噪声,提高设备的抗干扰能力。
根据实际情况选择合适的滤波器类型和参数,可以有效地减少电磁干扰。
4. 加强接地措施:良好的接地系统能够有效地降低电磁辐射和抗干扰能力。
通过增加接地导线的截面积、减小接地回路的阻抗、合理布置接地点等方式,可以提高接地系统的效果。
5. 使用屏蔽电缆和连接器:在高频信号传输过程中,使用屏蔽电缆和连接器可以有效地减少电磁辐射和干扰。
通过选择合适的屏蔽材料和设计合理的连接方式,可以提高电缆和连接器的抗干扰能力。
6. 合理选择元器件:在设计电子设备时,选择合适的元器件也是一种重要的EMC整改措施。
例如,选择低电磁辐射的元器件、抗干扰能力强的元器件等,可以提高整个系统的EMC性能。
7. 进行EMC测试和评估:在整改措施实施完成后,进行EMC测试和评估是必不可少的。
通过对设备进行电磁兼容性测试,可以评估整改措施的有效性,并对不合格的地方进行进一步的改进。
三、总结EMC整改是保障电子设备正常运行的重要环节。
通过合理的电磁屏蔽结构、优化电路布局、选择合适的滤波器、加强接地措施、使用屏蔽电缆和连接器、合理选择元器件以及进行EMC测试和评估等措施,可以有效地提高设备的电磁兼容性,减少电磁辐射和抗干扰能力,保证设备的正常运行。
汽车零部件电磁兼容整改对策随着汽车电子技术的快速发展,车辆中的电子设备越来越多,而这些电子设备对电磁兼容性的要求也越来越高。
电磁兼容性是指当汽车中多个电子设备同时工作时,它们之间不会相互干扰,也不会受到外界电磁辐射的干扰。
为了保证汽车的电磁兼容性,需要进行相应的整改对策。
一、提高零部件的屏蔽性能汽车零部件中的电子设备往往会产生较强的电磁辐射,因此需要在设计和制造过程中考虑屏蔽措施。
可以采用金属壳体对电子设备进行屏蔽,以阻隔电磁辐射的传播。
此外,还可以在电子设备周围设置金属屏蔽罩,进一步提高屏蔽效果。
二、优化电磁辐射噪声的传导路径在汽车中,电子设备之间的电磁辐射噪声会通过导线、电缆等传导路径相互干扰。
因此,需要优化这些传导路径,减少电磁辐射噪声的传导。
可以采取以下措施:1.合理布局和固定导线、电缆,避免它们之间的相互干扰;2.采用高抗干扰的导线和电缆,减少电磁辐射噪声的传导;3.对传导路径进行屏蔽,阻断电磁辐射噪声的传导。
三、加强电磁辐射噪声的滤波电子设备产生的电磁辐射噪声可以通过滤波器进行滤波处理,减少其对其他设备的干扰。
可以采用以下滤波措施:1.在电子设备的输入和输出端口处设置滤波器,阻断电磁辐射噪声的传输;2.选择合适的滤波器参数,使其能够有效地滤除电磁辐射噪声;3.定期检查和更换滤波器,确保其工作正常。
四、加强电磁兼容性测试与评估为了保证汽车零部件的电磁兼容性,需要进行全面的测试与评估。
可以采用以下方法:1.进行电磁辐射测试,检测电子设备产生的电磁辐射是否符合标准要求;2.进行电磁抗干扰测试,检测电子设备在外界电磁干扰下的工作状态;3.进行电磁兼容性评估,分析电子设备之间的相互干扰情况,提出相应的改进措施。
五、加强电磁兼容性管理与培训为了确保整改对策的有效实施,需要加强电磁兼容性的管理与培训。
可以采取以下措施:1.建立电磁兼容性管理制度,明确责任与要求;2.加强对零部件供应商的管理,确保其产品符合电磁兼容性要求;3.组织电磁兼容性培训,提高相关人员的专业知识和技能。
_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中正常工作的能力,即在不产生或者接受不可接受的电磁干扰的情况下,设备能够正常运行。
为了保证设备的EMC性能,需要进行EMC测试和整改。
本文将介绍EMC整改的常见措施。
二、EMC整改常见措施1. 电磁屏蔽电磁屏蔽是一种常见的EMC整改措施。
通过使用屏蔽材料,如金属壳体、金属网等,来阻挡电磁波的传播,减少电磁辐射和敏感电磁干扰的发生。
屏蔽材料的选择和设计要考虑到频率范围、屏蔽效果和成本等因素。
2. 地线设计良好的地线设计是EMC整改的重要措施之一。
通过合理布置和连接设备的地线,可以有效降低电磁辐射和敏感电磁干扰。
地线的设计要考虑到接地电阻、接地导线的长度和截面积等因素,确保地线的导电性和稳定性。
3. 滤波器应用滤波器是一种用于抑制电磁干扰的设备。
在EMC整改中,可以通过在电源路线、信号路线等关键位置安装滤波器,来减少电磁干扰的传播和影响。
滤波器的选择要根据不同频段的干扰源和受干扰设备的特点进行。
4. 接地屏蔽接地屏蔽是一种通过合理设计接地系统来减少电磁干扰的方法。
通过将设备的金属壳体、屏蔽罩等与地线连接,形成一个低阻抗的接地回路,可以有效地抑制电磁辐射和敏感电磁干扰。
5. 电磁辐射测试和改善电磁辐射测试是评估设备EMC性能的重要手段。
通过对设备进行电磁辐射测试,可以了解设备在不同频段下的辐射水平,并根据测试结果采取相应的改善措施,如增加屏蔽、优化布线等,以满足EMC要求。
6. 电磁免疫测试和改善电磁免疫测试是评估设备抗干扰能力的重要手段。
通过对设备进行电磁免疫测试,可以了解设备在不同干扰源下的工作状态,并根据测试结果采取相应的改善措施,如增加滤波器、优化接地等,以提高设备的抗干扰能力。
7. 信号路线布线和屏蔽信号路线的布线和屏蔽对于EMC性能具有重要影响。
电磁兼容性整改的几种方法
首先,要根据实际情况对产品进行诊断,分析其干扰源所在及其相互干扰的途径和方式。
再根据分析结果,有针对性的进行整改。
一般来说主要的整改方法有如下几种。
1减弱干扰源在找到干扰源的基础上,可对干扰源进行允许范围内的减弱,减弱源的方法一般有如下方法:
a 在IC的Vcc和GND之间加去耦电容,该电容的容量在0。
01μF棗0。
1μF之间,安装时注意电容器的引线,使它越短越好。
b 在保证灵敏度和信噪比的情况下加衰减器。
如VCD、DVD视盘机中的晶振,它对电磁兼容性影响较为严重,减少其幅度就是可行的方法之一,但其不是唯一的解决方法。
c 还有一个间接的方法就是使信号线远离干扰源。
2电线电缆的分类整理在电子设备中,线间耦合是一种重要的途径,也是造成干扰的重要原因,因为频率的因素,可大体分为高频耦合与低频耦合。
因耦合方式不同,其整改方法也是不同的,下边分别讨论:
(1)低频耦合低频耦合是指导线长度等于或小于1/16波长的情况,低频耦合又可分为电场和磁场耦合,电场耦合的物理模型是电容耦合,因此整改的主要目的是减小分布耦合电容或减小耦合量,可采用如下的方法:
a增大电路间距是减小分布电容的最有效的方法。
b追加高导电性屏蔽罩,并使屏蔽罩单点接地能有效的抑制低频电场干扰。
c追加滤波器可减小两电路间的耦合量。
d降低输入阻抗,例如CMOS电路的输入阻抗很高,对电场干扰极其敏感,可在允许范围内在输入端并接一个电容或阻值较低的电阻。
磁场耦合的物理模型是电感耦合,其耦合主要是通过线间的分布互感来耦合的,因此整改的主要方法是破坏或减小其耦合量,大体可采用如下的方法:a追加滤波器,在追加滤波器时要注意滤波器的输入输出阻抗及其频率响应。
b减小敏感回路与源回路的环路面积,即尽量使信号线或载流线与其回线靠近或扭绞在一体。
c增大两电路间距,以便减小线间互感来减低耦合量。
d若有可能,尽量使敏感回路与源回路平面正交或接近正交来降低两电路的耦合量。
e用高导磁材料来包扎敏感线,可有效的解决磁场干扰问题,值得注意的是要构成闭和磁路,努力减小磁路的磁阻将会更加有效。
(2)高频耦合高频耦合是指长于1/4波长的走线由于电路中出现电压和电流的驻波,会使耦合量增强,可采用如下的方法加以解决:
a尽量缩短接地线,与外壳接地尽量采用面接触的方式。
b重新整理滤波器的输入输出线,防止输入输出线间耦合,确保滤波器的滤波效果不变差。
c屏蔽电缆屏蔽层采用多点接地。
d将连接器的悬空插针接到地电位,防止其天线效应。
3改善地线系统理想的地线是一个零阻抗,零电位的物理实体,它不仅是信号的参考点,而且电流流过时不会产生电压降。
在具体的电气电子设备中,这种理想地线是不存在的,当电流流过地线时必然会产生电压降。
据此可根据地线中干扰形成机理可归结为以下两点,第一,减小低阻抗和电源馈线阻抗。
第二,正确选择接地方式和阻隔地环路,按接地方式来分有悬浮地、单点接地、多点接地、混合接地。
如果敏感线的干扰主要来自外部空间或系统外壳,此时可采用悬浮地的方式加以解决,但是悬浮地设备容易产生静电积累,当电荷达到一定程度后,会产生静电放电,所以悬浮地不宜用于一般的电子设备。
单点接地适用于低频电路,为防止工频电流及其
他杂散电流在信号地线上各点之间产生地电位差,信号地线与电源及安全地线隔离,在电源线接大地处单点连接。
单点接地主要适用于频率低于3MHz的情况。
多点接地是高频信号唯一实用的接地方式,在射频时会呈现传输线特性,为使多点接地的有效性,当接地导体长度超过最高频率1/8波长时,多点接地需要一个等电位接地平面。
多点接地适用于300KHz以上。
混合接地适用于既然有高频又有低频的电子线路中。
4屏蔽屏蔽是提高电子系统和电子设备电磁兼容性能的重要措施之一,它能有效的抑制通过空间传播的各种电磁干扰。
屏蔽按机理可分为磁场屏蔽与电场屏蔽及电磁屏蔽。
电场屏蔽应注意以下几点:a选择高导电性能的材料,并且要有良好的接地。
b正确选择接地点及合理的形状,最好是屏蔽体直接接地。
磁场屏蔽通常只是指对直流或甚低频磁场的屏蔽,其屏蔽效能远不如电场屏蔽和电磁屏蔽,磁屏蔽往往是工程的重点,磁屏蔽时:a要选用铁磁性材料。
b磁屏蔽体要远离有磁性的元件,防止磁短路。
c可采用双层屏蔽甚至三层屏蔽。
d屏蔽体上边的开孔要注意开孔的方向,尽可能使缝的长边平行于磁通流向,使磁路长度增加最少。
一般来说,磁屏蔽不需要接地,但为防止电场感应,还是接地为好。
电磁场在通过金属或对电磁场有衰减作用的阻挡体时,会受到一定程度的衰减,即产生对电磁场的屏蔽作用。
在实际的整改过程中视具体需要而定选择何种屏蔽及屏蔽体的形状、大小、接地方式等。
5改变电路板的布线结构有些频率点是通过电路板上走线分布参数所决定的,通过前述方法不大有用,此类整改通过在走线中增加小的电感、电容、磁珠来改变电路参数结构,使其移到限值要求较高的频率点上。
对于这类干扰,要想从根本上解决其影响,就要重新布线。
3
小结:总之前面几种方法对提高电磁兼容性都有好处,但应用最为广泛的是改变地线结构及电线电缆的分类整理的方法,这些方法不仅节约成本,而且是最有效的整改方法。
屏蔽虽然会增加成本,但是其所起到的屏蔽效能有时是其它方法无法媲美的。
所以,在实际的整改中应以改变地线结构、电线电缆的分类整理、屏蔽的方法为主,以其它方法为辅。