七年级数学下册第六章数据与统计表检测卷习题课件(新版)浙教版
- 格式:ppt
- 大小:1.47 MB
- 文档页数:19
2021年春季第6章检测卷一、选择题(每题3分,共30分)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.调查七年级(1)班学生的某次数学考试成绩C.调查某班学生的身高D.了解全市中小学生每天的零花钱2.如图是某班学生参加课外兴趣小组的人数占总人数百分比的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组(第2题)(第5题)(第7题)3.要调查你校学生学业负担是否过重,选用下列哪种方法最恰当() A.查阅文献资料 B.对学生无记名问卷调查C.上网查询D.对校领导问卷调查4.为了表示某种食品中钙、维生素、糖等物质的含量的百分比,应选用() A.条形统计图B.折线统计图C.扇形统计图D.直方图5.在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学的捐款情况绘制成如图所示的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是()A.20元B.15元C.12元D.10元6.为了了解2017年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取2021年春季1 000名学生的数学成绩,下列说法正确的是()A.2017年昆明市九年级学生是总体B.每一名九年级学生是个体C.1 000名九年级学生是总体的一个样本D.样本容量是1 0007.某公司的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌8.小林家今年1~5月份的用电量情况如图所示,由图可知,相邻两个月中,用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月(第8题)(第9题)(第10题)9.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约为()A.50%B.55%C.60% D.65%10.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽2021年春季样调查得到一组数据,根据这组数据绘制成不完整的统计图如图,则下列四种说法中不正确的是()A.被调查的学生有200人B.被调查的学生中最喜欢教师职业的有40人C.被调查的学生中最喜欢其他职业的占40%D.扇形统计图中,公务员部分对应扇形圆心角的度数是72°二、填空题(每题3分,共24分)11.要调查某班学生对“社会主义核心价值观”内容的熟记情况,宜选择____________.(填“全面调查”或“抽样调查”)12.已知一个样本数据分组的组距是10,某组的组别显示“27.5~37.5”,则该组的组中值是________.13.某学校为了解学生课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图所示的统计图.若该校共有800名学生,估计最喜爱“踢毽子”的学生有________名.(第13题)(第18题)14.小亮同学为了估计全县九年级学生的人数,对自己所在乡的人口和全乡九年级学生人数作了调查:全乡人口约2万,九年级学生人数为300.全县人口约35万,由此他推断全县九年级学生人数约为5 250,但县教育局提供的全县九年级学生人数为3 000,与估计数据有很大偏差.根据所学的统计知识,你认为产生偏差的原因是________________________.15.为制订某区七年级学生校服的生产计划,有关部门需要了解七年级男生的身高情况.现有三种调查方案:①测量该区各学校男子篮球队、排球队中七年级学生的身高;②查阅外区各校七年级男生身高的统计资料;③在该区的城2021区和农村均任选几所学校,测量这几所学校七年级男生的身高.你认为上述调查方案中比较合适的是________.(只填写序号)16.某班50名学生在某一次考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有________名.17.从某厂生产的同种规格的电阻中,抽取100只进行测量,得到一组数据.其中最大值为11.58欧,最小值为10.72欧,对这组数据进行整理时,确定它的组距为0.10欧,则应分成________组. 18.如图是某农场里三种蔬菜种植面积的扇形统计图,若西红柿种植面积为4.2公顷,则这三种蔬菜种植总面积是________公顷,表示黄瓜的扇形圆心角的度数为________. 三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.某股票上周五的收盘价为3元,本周的收盘价分别为:周一3.2元;周二3.25元;周三3.35元;周四3.18元;周五3.3元,根据以上信息完成下列各题:(1)填写下面的统计表:(2)画出你认为最能反映该股票变化情况的统计图.20.某学校为了解2017年八年级学生课外书籍借阅情况.从中随机抽取了40名学生进行调查,根据调查结果列出如下的表格,并绘制成如图所示的扇形2021年春季教案等集合统计图,其中科普类本数占这40名学生借阅总本数的40%.类别 科普类 教辅类 文艺类 其他 本数(本)12880m48(1)求表格中字母m 的值及扇形统计图中“教辅类”所对应的圆心角α的度数;(2)该校2017年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本.(第20题)21.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数统计表和频数直方图(如图).(第21题)月均用水量x (单位:t) 频数 百分比 2≤x <324%(1)请根据题中已有的信息补全频数统计表和频数直方图;(2)如果家庭月均用水量大于或等于4 t且小于7 t为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户.22.某学习小组对所在城区初中学生的视力情况进行抽样调查,图①是调查小组根据调查结果画出的条形统计图.请根据图中信息解决下列问题:(1)本次调查活动中共抽查了多少名学生?(2)请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图的形式在图②中表示出来.(3)假设该城区八年级共有4 000名学生,请估计这些学生中视力低于4.8的学生约有多少名.2021年春季试卷 测试题教案等集合(第22题)23.为了解某校七、八年级学生的睡眠情况,随机抽取了该校七、八年级部分学生进行调查.已知抽取的七年级与八年级的学生人数相同,利用抽样所得的数据绘制了如下统计图表.睡眠情况分组表(单位:小时)组别 睡眠时间x A x <7.5 B7.5≤x <8.5 C 8.5≤x <9.5D 9.5≤x <10.5 Ex ≥10.52021年春季(第23题)根据图表提供的信息,回答下列问题:(1)求统计图中的a.(2)抽取的样本中,八年级学生睡眠时间在C组的有多少人?(3)已知该校七年级学生有755人,八年级学生有785人.如果睡眠时间x(小时)满足:7.5≤x<9.5,称睡眠时间合格.试估计该校七、八年级学生中睡眠时间合格的共有多少人.24.某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):10,12,15,10,16,18,19,18,20,38,22,25,20,18,18,20,15,16,21,16.(1)若将这些数据分为6组,请列出频数表,画出频数直方图;(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.2021年春季复习题 练习教案等集合答案一、1.D 2.B 3.B 4.C 5.D 6.D 7.D 8.B 9.C 10.C 二、11.全面调查 12.32.513.20014.样本选取不合理 15.③ 16.5 17.9 18.7.5;108° 三、19.解:(1)日期上周五 周一 周二 周三 周四 周五 收盘价(元) 33.23.253.353.183.3(2)如图所示.某股票收盘价变化情况折线统计图(第19题)20.解:(1)依题意得,总本数为128÷40%=320(本),∴m =320-128-80-48=64.“教辅类”所对应的圆心角α=80320×360°=90°. (2)8040×500=1 000(本).答:估计该年级学生共借阅教辅类书籍约1 000本. 21.解:(1)补全频数统计表如下:2021年春季小学数学试卷月均用水量x (单位:t ) 频数 百分比 2≤x <3 24%3≤x <4 12 24% 4≤x <5 15 30% 5≤x <6 10 20% 6≤x <7 6 12% 7≤x <8 3 6% 8≤x <924%补全频数直方图如图:(第21题)(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户).22.解:(1)本次调查活动中共抽查了200+600+300+500+200+300=2 100(名)学生.(2)本次调查中视力不低于4.8的学生人数为600+500+300=1 400(名),所占的比例为1 4002 100=23,约为67%.所以估计该城区视力不低于4.8的学生人数约占学生总人数的67%. 扇形统计图如图所示.(第22题)(3)由条形统计图可知在抽取的八年级的学生中,视力低于4.8的学生占抽2021年春季11 2021年春季小学数学 复习题 练习取的八年级学生总人数的300800,则估计该城区八年级视力低于4.8的学生人数约为300800×4 000=1 500(名).23.解:(1)a =1-35%-25%-25%-10%=5%. (2)依题意,得八年级抽取的学生人数为6+19+17+10+8=60(人),所以八年级学生睡眠时间在C 组的有60×35%=21(人). (3)755×19+1760+785×(25%+35%)=924(人).答:估计该校七、八年级学生中睡眠时间合格的共有924人. 24.解:(1)组别(min)划记 频数 9.5~14.53 14.5~19.5正正 10 19.5~24.5正 5 24.5~29.51 29.5~34.50 34.5~39.5 1(第24题)(2)校方安排学生吃午餐时间25 min 左右为宜,因为约有90%的学生在25 min 内可以就餐完毕.。
初中数学七年级下册第六章数据与统计图表定向练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是20122019()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务2、在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为453、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人4、某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是( )A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系5、为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是( )A.全面调查;26 B.全面调查;24C.抽样调查;26 D.抽样调查;246、某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是( )A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌7、下列采用的调查方式中,不合适的是()A.了解澧水河的水质,采用抽样调查.B.了解一批灯泡的使用寿命,采用全面调查.C.了解张家界市中学生睡眠时间,采用抽样调查.D.了解某班同学的数学成绩,采用全面调查.8、某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°9、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市10、对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人二、填空题(5小题,每小题4分,共计20分)1、某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作.A.“北斗卫星”;B.“5G时代”;C.“智轨快运系统”;D.“东风快递”;E.“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选“5G时代”的百分率为 ______.2、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.3、为了解神舟飞船的设备零件的质量情况,选择抽样调查的方式是否合理______(填是或否).4、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.5、2021年4月25日-29日,福州举办第四届数字中国建设峰会,会务组要知道所有参会人员的体温状况,应采用的调查方式是__.(填“抽样调查”或“全面调查”)三、解答题(5小题,每小题10分,共计50分)1、调查全班同学在家做家务活的现状.注意明确你的调查内容和目的,用适当的图表表示你的调查结果,并说明你获得数据信息的方式.2、下面数据是某校男子足球队20名队员的身高(单位:cm):156,154,161,158,164,150,163,160,159,155,150,161,157,168,163,159,165,164,158,153.请按组距为4进行分组,列出频数分布表,画出频数分布直方图,并分析数据分布情况.3、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?4、今年是中国共产党建党100周年,某校七年级开展“学党史,诵经典”主题诗歌诵比赛,评选出一、二、三等奖若干名.现随机抽取部分获奖学生的情况进行统计,绘制成如下统计图(均不完整).请你根据给出的信息完成下列问题:(1)本次统计抽取的获奖学生人数是多少?(2)补全条形统计图,并求出扇形统计图中二等奖的圆心角度数;(3)若本次比赛七年级有120名学生获奖,估计其中有多少人获三等奖?5、在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动.为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A.从某所普通中学校随机选取200名学生作为调查对象进行调查;B.从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C.从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在1~2小时之间的人数m=.(3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在1~2小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.---------参考答案-----------一、单选题1、A【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.【详解】A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D、根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故选:A.【点睛】本题考查了条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.2、D【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的20%,则抽取样本人数为1020%50÷=人,故B选项正确;所以,第四小组人数为50410166410-----=人,故A选项正确;第五小组对应的圆心角度数为636043.250︒⨯=︒,故D选项错误;用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1064120048050++⨯=人,故C选项正确;故选:D.【点睛】本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.3、D【详解】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、D【详解】考点:扇形统计图.分析:利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.解答:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误.5、D【详解】试题分析:本次调查方式为抽样调查,a=50﹣6﹣10﹣6﹣4=24.故选D.考点:1.条形统计图2.全面调查与抽样调查.6、D【详解】由折线统计图可知2~6月份生产量增长率逐渐减少,7月份生产量月增长率开始回升,这七个月中,生产量的增长率始终是正数,则每月的生产量不断上涨,所以A、B、C都正确,错误的只有D;故选D.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,注意在图形中纵轴表示的是增长率,只有增长率是负数,才表示生产量下跌.7、B【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、C【详解】试题分析:根据汽车的人数和百分比可得:被调查的学生数为:21÷35%=60人,故A正确;步行的人数为60×(1-35%-15%-5%)=27人,故B正确;全校骑车上学的学生数为:2560×35%=896人,故C 错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确,则本题选C.9、D【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.10、D【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选D.【点睛】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.二、填空题1、30%.【分析】根据折线图,先算出总人数,然后用“5G时代”的人数除以总人数即可得到答案.【详解】解:由折线图可知:这个班的总人数=25+30+10+20+15=100人∵“5G时代”的人数是30∴“5G时代”的百分率=30÷100=30%故答案为:30%.【点睛】本题主要考查了折线统计图,解题的关键在于能够准确地从折线图中获取信息求解.2、16【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.3、否【分析】由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此解答即可.【详解】解:为了了解神舟飞船的设备零件的质量情况,意义重大,适合普查,不适合抽样调查.故答案为:否.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、50 0.16【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意120.2450÷=(人)8500.16÷=故答案为:50,0.16本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.5、全面调查【分析】根据事件的特点,结合全面调查特点即可确定调查方式.【详解】∵第四届数字中国建设峰会参会人员有限,疫情的需要,∴选全面调查.故答案为:全面调查【点睛】根据事件的特点,结合全面调查特征确定答案,做题的关键是弄清全面调查的优点以及局限性.三、解答题1、见解析【分析】1、阅读题目信息,确定调查的方法;2、采用问卷调查的方法调查班级里每位同学做家务活的状况;3、根据调查对象和目的的确定,结合调查的结果即可制作出适当的图表.【详解】解:调查内容为学生做家务的现状;获取数据的方式为问卷调查;制作的图表如下:2、列出频数分布表,画出频数分布直方图,见解析;大约有60%的队员的身高在158﹣166cm.【分析】求出极差,再根据组距为4,确定组数,进而列出频数分布表,根据各组频数绘制频数分布直方图,并作简单的数据分析即可.【详解】解:这组数据的最大值为168,最小值为150,极差为168﹣150=18,组距为4,组数为18÷4≈5,频数分布表为:频数分布直方图如下:由频数分布表和频数分布直方图可知,大约有60%的队员的身高在158﹣166cm.【点睛】本题考查频数分布表、频数分布直方图,掌握频数分布直方图的制作方法是正确解答的关键.3、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、(1)40;(2)图见解析,108°;(3)72人【分析】(1)根据条形图可得一等奖人数为4人,根据扇形图可得一等奖所占百分比为10%,根据频率公式即可求解;(2)根据样本容量减去一等奖,二等奖人数可三等奖人数即可补全条形图如图,然后求出二等奖所占百分比,利用360°×二等奖百分比便可求出扇形圆心角;(3)先求出样本的百分比,然后用样本的百分比乘以年级总数即可.【详解】解:(1)∵一等奖人数为4人,一等奖所占百分比为10%,本次统计随机抽取部分获奖学生人数为4÷10%=40人;(2)三等奖人数为40-4-12=24,补全条形图如图,∵二等奖所占百分比为12÷40×100%=30%,∴扇形统计图中二等奖的圆心角度数360°×30%=108°;(3)∵样本中获三等奖的百分比为24÷40×100%=60%,∴本次比赛七年级有120名学生中获三等奖人数为120×60%=72人.【点睛】本题考查条形统计图与扇形统计图获取信息,样本容量,补画条形图,求扇形圆心角,用样本的百分比含量估计总体中的数量,习题难度适中,能灵活运用统计知识是解题关键.5、(1)C;(2)54;(3)54万人;(4)这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.【分析】(1)根据题意和抽样调查的特点,可以选出比较合理的调查方式;(2)根据直方图中的数据,可以计算出m的值;(3)根据直方图中的数据,可以计算出全市每天“停课不停学”的学习时间在1~2小时及以上的人数有多少;(4)本题答案不唯一,说法只要合理即可.【详解】解:(1)由题意可得:从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;(2)m=200﹣92﹣36﹣18=54,故答案为:54;(3)100×20092200=54(万),答:全市每天“停课不停学”的学习时间在1~2小时及以上的人数有54万人;(4)这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.【点睛】本题考查频数分布直方图、全面调查与抽样调查、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。
初中数学七年级下册第六章数据与统计图表专题测评(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、2018年1~4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是()A.1月份销售为2.2万辆B.从2月到3月的月销售增长最快C.4月份销售比3月份增加了1万辆D.1~4月新能源乘用车销售逐月增加2、为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图3、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查4、某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1105、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②→④→③ D.②→④→③→①6、我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图B.扇形图C.折线图D.频数分布直方图7、下列调查工作需采用普查方式的是()A.环保部门对长江某段水域的水污染情况的调查;B.电视台对正在播出的某电视节目收视率的调查;C.质检部门对各厂家生产的电池使用寿命的调查;D.企业在给职工做工作服前进行的尺寸大小的调查.8、如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳9、下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④10、要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生二、填空题(5小题,每小题4分,共计20分)1、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:(1)全班同学最感兴趣的课外活动项目是______;(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.2、为了解某校七年级400名学生的身高情况,从中抽查了100名学生的身高情况进行统计分析,在此次调查中样本容量是____.3、某校有2400名九年级学生,随机调查了其中的400名学生,结果有150名学生会游泳,估计该校会游泳的九年级学生人数约为 _______.4、某商店今年1﹣4月的手机销售总额如图1;其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下五个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所上升;④1~4月中,音乐手机销售额最低的是3月;⑤1~4月音乐手机的销售额一共53.4万元.其中正确的结论有 ___(填写序号).5、如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是__________.(填“甲”或“乙”)三、解答题(5小题,每小题10分,共计50分)1、判断下面这些抽样调查选取样本的方式是否合适,并说明理由.(1)为了了解某厂家生产的零件质量,在其生产线上每隔300个零件抽取1个检查;(2)为了了解某城市全年的降水情况,随机调查该城市某月的降水量.2、下面是甲、乙两城市月降水量统计表(单位:mm):(1)根据上面的统计表,制作一幅适当的统计图表示两个城市降水量的变化.(2)根据制作的统计图回答下列问题:①哪个城市一年降水量的变化幅度大?②从总体上看,两个城市的月降水量之间最明显的差别是什么?③甲、乙两市在哪个月份的降水量相差最大?相差多少?3、调查全班同学在家做家务活的现状.注意明确你的调查内容和目的,用适当的图表表示你的调查结果,并说明你获得数据信息的方式.4、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场推出的C类礼盒有盒;(2)在扇形统计图中,C部分所对应的圆心角等于度;(3)请将条形统计图补充完整;(4)你觉得哪一类礼盒销售最快,请说明理由.5、某部门统计了某地1000名18周岁以上的成年男子的身高,得到如下数据:根据上述数据,绘制频数直方图.---------参考答案-----------一、单选题1、D【详解】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B. 从2月到3月的月销售增长最快,正确.C.4.3 3.31-=, 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题的关键是看懂图象.2、D【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.【详解】欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.【点睛】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.3、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、A【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.【详解】解:“良”和“优”的人数所占的百分比:852518728525++++×100%=55%,∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.5、D【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D.【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.6、B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能反映各个部分占总体的百分比,折线统计图能反映样本或总体的趋势,频数分布直方图能反映样本或总体的分布情况,熟练掌握各统计图的特点是解题的关键.7、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.C、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,适合抽样调查.D、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适合全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.9、B【详解】试题分析:①适合普查,故①不适合抽样调查;②调查具有破坏性,故适合抽样调查,故②符合题意;③调查要求准确性,故③不适合抽样调查;④安检适合普查,故④不适合抽样调查.故选B.考点:全面调查与抽样调查.10、B【详解】分析:根据具体情况正确选择普查或抽样调查方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.详解:要调查安顺市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的性别差异和学校差异,所以应在安顺市中学生中随机抽取200名学生.故选B.点睛:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、体育运动 10 20%【分析】(1)从统计表中直接通过比较即可得到.(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.【详解】解:从统计表分析人数可得到结论.由表可得:(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=20%.故答案为:(1)体育运动;(2)10,20%【点睛】本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.2、100【分析】样本容量则是指样本中个体的数目.【详解】解:从中抽查了100名学生的身高,则这次调查中的样本容量是100,故答案为:100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、900名【分析】用总人数乘以样本中会游泳的学生人数所占比例即可.【详解】解:估计该校会游泳的九年级学生人数约为2400×150400=900(名),故答案为:900名.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.4、③④⑤【分析】根据折线统计图、条形统计图中的信息解答即可.【详解】解:①从1月到4月,手机销售总额不是连续下降,3月到4月是增长的,原说法错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比不是连续下降,2月到3月是增长的,原说法错误;③音乐手机4月份的销售额比3月份有所下降,原说法正确;④今年1~4月中,音乐手机销售额最低的是3月,原说法正确;⑤1~4月音乐手机的销售额是:85×23%+80×15%+60×18%+65×17%=53.4(万元),所以1~4月音乐手机的销售额一共53.4万元,原说法正确.故答案为:③④⑤.【点睛】本题考查折线统计图,条形统计图等知识,解题的关键是熟练掌握折线统计图、条形统计图的相关知识.5、乙【分析】根据折线统计图中的数据判断即可.【详解】解:由折线统计图知,甲种酒从2012年到2020年价格增长量是60840=2.5元,乙种酒从2016年到2020年价格增长量是60440=5元,故乙种酒价格增长速度比甲快,故答案为:乙.【点睛】此题主要考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况,如增长率.三、解答题1、(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性【分析】根据调查应具有代表性分析解答.【详解】解:(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性.【点睛】此题考查调查样本的选取,掌握样本的选取应具有代表性的特点是解题的关键.2、(1)选择折线统计图,见解析;(2)①乙市.②甲市降水量的变化是“单峰”的,乙市降水量的变化是“双峰”的;③6月,相差290mm.【分析】(1)表示两个城市降水量的变化趋势,选择折线统计图即可;(2)①由折线统计图的趋势可得答案;②由折线统计图可以看出最明显的差别是乙市有两个月的降水量大,而甲市只有一个月,从而可得答案;③由降水量统计表结合统计图可得答案.【详解】解:(1)选择折线统计图,如图(2)①从折线统计图中可以看出:乙市一年降水量的变化幅度大.②甲市降水量的变化是“单峰”的,乙市降水量的变化是“双峰”的.③从统计图结合统计表可得:6月,相差290mm.【点睛】本题考查的是制作折线统计图,从统计表与折线统计图中获取信息,掌握折线统计图的知识是解题的关键.3、见解析【分析】1、阅读题目信息,确定调查的方法;2、采用问卷调查的方法调查班级里每位同学做家务活的状况;3、根据调查对象和目的的确定,结合调查的结果即可制作出适当的图表.【详解】解:调查内容为学生做家务的现状;获取数据的方式为问卷调查;制作的图表如下:【点睛】4、(1)200;(2)72;(3)见解析;(4)A类礼盒销售最快,见解析.【分析】(1)求出C类礼盒所占的百分比即可计算其数量;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)求出销售的C类礼盒的数量,即可补全条形统计图;(4)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×(1﹣35%﹣25%﹣20%)=200(盒),故答案为:200;(2)360°×(1﹣35%﹣25%﹣20%)=72°,故答案为:72;(3)1000×50%﹣168﹣80﹣150=102(盒),补全条形统计图如图所示:(4)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查了条形统计图、扇形统计图的意义和制作方法,理解统计图中各个数量之间的关系是解决问题的关键.5、见解析【分析】根据题中数据绘制对应的统计图即可.【详解】解:如图所示,即为所求;【点睛】本题主要考查了绘制频数分布直方图,解题的关键在于能够熟练掌握绘制频数分布直方图的方法.。
初中数学七年级下册第六章数据与统计图表专项测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:则通话时间不超过15 min的频率为( )A.0.1 B.0.4 C.0.5 D.0.92、小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④3、下列调查中,适宜采用全面调查的是()A.调查全国初中学生视力情况B.了解某班同学“三级跳远”的成绩情况C.调查某品牌汽车的抗撞击情况D.调查2019年央视“主持人大赛”节目的收视率4、某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤5、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四6、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人7、为了了解青海湖自然保护区中白天鹅的分布数量,保护区的工作人员捕捉了40只白天鹅做记号后,放飞在大自然保护区里,过一段时间后又捕捉了40只白天鹅,发现里面有5只白天鹅有记号,试推断青海湖自然保护区里有白天鹅( )A.40只B.1600只C.200只D.320只8、下列选项中,显示部分在总体中所占百分比的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图9、每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况10、为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图二、填空题(5小题,每小题4分,共计20分)1、某校举办“数学计算能手大赛”,赛后将参赛学生的成绩按分数段分为三组,把大赛成绩80≤x≤100分记为“优秀”,60≤x<80分记为“良好”,x<60分记为“一般”,并绘制成如图所示的扇形统计图,则“良好”部分所对应的圆心角θ的度数为 ___.2、牛奶里含有丰富的营养成分,某品牌牛奶所含营养成分如图所示.若同学们每天喝一支200克的这种牛奶,则能补充的蛋白质为________克.3、在频数分布直方图中,横坐标表示________,纵坐标表示各组的________,各个小长方形的面积等于相应各组的________,全体小长方形总面积即________,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的________,等距分组时,通常直接用小长方形的高表示________.4、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.5、甲、乙两公司经营同种产品,近年的销售量如图所示销量增速较快的是__公司.三、解答题(5小题,每小题10分,共计50分)1、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?(2)制订一个调查方案,展开调查.(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.2、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.3、调查全班同学在家做家务活的现状.注意明确你的调查内容和目的,用适当的图表表示你的调查结果,并说明你获得数据信息的方式.4、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:根据以上信息,解答下列问题:(1)成绩6070≤<这一段的人数占被抽取总人数的百分比为_____________;x(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数.5、某同学调查了小区内50户人家当年10月份的家庭用水量,结果(单位:3m)如下:请你根据上述信息,绘制相应的频数直方图.---------参考答案-----------一、单选题1、D【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.【详解】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,∴通话时间不超过15min的频率为4550=0.9,故选D.【点睛】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.2、B【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据3、B【分析】根据全面调查和抽样调查的适用条件即可求解.【详解】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,故选:B.【点睛】本题考查全面调查和抽样调查的适用条件,解题关键是要知道这个适用条件.4、C【分析】在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中找到三个互不包含,互不交叉的项目即可.【详解】解:∵①室外体育运动,包含了②篮球和③足球,⑤球类运动,包含了②篮球和③足球,∴只有选择②③④,调查问卷的选项之间才没有交叉重合,故选:C.【点睛】本题考查收集调查数据的过程与方法,理解题意,准确掌握收集数据的方法是解题的关键.5、A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.6、D【详解】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7、D【分析】先根据样本求出有记号的白天鹅所占的百分比,再用40除以这个百分比即可.【详解】根据题意得:5(只),40=32040答:青海湖自然保护区里有白天鹅320只;故选D.【点睛】本题考查了用样本估计总体,解题关键是熟记总体平均数约等于样本平均数.8、A【详解】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.故在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图;故选A.9、D【分析】个体是总体中的每一个调查的对象,据此判定即可.【详解】在这次调查中,个体是每一名学生对“世界读书日”的知晓情况故选:D.【点睛】本题考查了调查中个体的定义,掌握理解个体的概念是解题关键.10、D【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.【详解】欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.【点睛】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.二、填空题1、162【分析】先根据题意以及扇形统计图算出成绩“良好”所占的比例,然后再用360︒乘以这个比例即可.【详解】扇形统计图中成绩“优秀”的占比 48%,成绩“一般”的占比 7%,∴成绩“良好”的占比:100%-48%-7%=45%,∴“良好”部分所对应的圆心角θ的度数为:36045%=162︒⨯︒,故答案为:162︒.【点睛】本题考查了扇形统计图,属于基础题,掌握扇形统计图的基础知识,计算出比例是解题关键.2、12【分析】根据扇形统计图的数据直接求解即可.【详解】2006%12⨯=故答案为:12【点睛】本题考查的是扇形统计图的概念,理解概念是解题的关键.3、组距频数组距频数样本容量频率频数【分析】根据画频数直方图的相关概念分析即可.【详解】在频数分布直方图中,横坐标表示组距,纵坐标表示各组的频数组距,各个小长方形的面积等于相应各组的频数,全体小长方形总面积即样本容量,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的频率,等距分组时,通常直接用小长方形的高表示频数.故答案为:组距;频数组距;频数;样本容量;频率;频数【点睛】本题考查了频数直方图,掌握画频数直方图是解题的关键.4、16【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.5、乙【分析】根据两个统计图中数据的变化情况进行判断.【详解】解:甲公司2016年至2019年,销售量从4万件增加到7万件,而乙公司2016年至2019年,销售量从4万件增加到约8.2万件,因此乙公司增速较快,故答案为:乙.【点睛】本题考查折线统计图的意义,掌握折线统计图中数量的变化情况是正确判断的前提.三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)分析题意,根据题目信息,即可回答;(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;(3)根据抽样调查的特点,写一份调查报告即可.【详解】(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?对象:接受调查的人可选择抽样调查的调查方式;样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;(2)结合(1)中信息即可制定合理的调查方案,如:问卷调查表:简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;根据抽样调查的特点,自己写一份调查报告即可.【点睛】本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.2、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.【详解】解:(1)∵200400×100%=50%,160400×100%=40%,32400×100%=8%,8400×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.【点睛】此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.3、见解析【分析】1、阅读题目信息,确定调查的方法;2、采用问卷调查的方法调查班级里每位同学做家务活的状况;3、根据调查对象和目的的确定,结合调查的结果即可制作出适当的图表.【详解】解:调查内容为学生做家务的现状;获取数据的方式为问卷调查;制作的图表如下:【点睛】4、(1)30%;(2)182人.【分析】(1)由题意根据图表得出成绩6070≤<这一段的人数,进而除以抽取总人数即可得到答案;x(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩6070x≤<这一段的人数为:6人,所以成绩6070x≤<这一段的人数占被抽取总人数的百分比为:620100%30%÷⨯=,故答案为:30%;(2)根据图表可得成绩不低于70分的学生人数为:55414++=(人),所以剪纸比赛成绩不低于70分的学生人数为:1426018220⨯=(人).答:剪纸比赛成绩不低于70分的学生人数有182人.【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键.5、见解析【分析】根据所给频数分布表画出相应的频数分布直方图即可.【详解】解:频数分布直方图如图所示:【点睛】本题考查了认识频数分布表以及画频数分布直方图的能力,利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的频数分布直方图.。
初中数学七年级下册第六章数据与统计图表专题练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.402、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2603、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市4、如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人5、以下问题,不适合普查的是()A.了解一批灯泡的使用寿命B.学校招聘教师,对应聘人员的面试C.了解全班学生每周体育锻炼时间D.进入地铁站对旅客携带的包进行的安检6、某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策7、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查8、小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④9、下列调查中,适合采用全面调查(普查)方式的是()A.对綦江河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查10、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见二、填空题(5小题,每小题4分,共计20分)1、在数据25,23,21,29,28,25,22,26,28,26,26,27,25,21,29中,范围在2527(包括前边的数,不包括后边的数)这一组的频数是________.2、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:(1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.3、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.4、下列调查中,调查方式选择正确的是_____.①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.5、西双版纳,美丽家乡,某中学为了增强学生对家乡的了解和热爱,举行了西双版纳州情知识竞赛.该校随机抽取了部分学生的测试成绩,按优秀、良好、合格、不合格四个等级绘制了如图所示的两个统计图,则在扇形统计图中,测试等级“不合格”对应的圆心角应为 ______.三、解答题(5小题,每小题10分,共计50分)1、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木次调查的学生共有人,扇形统计图中∠α的度数是;(2)请把条形统计图补充完整.2、判断下面这些抽样调查选取样本的方式是否合适,并说明理由.(1)为了了解某厂家生产的零件质量,在其生产线上每隔300个零件抽取1个检查;(2)为了了解某城市全年的降水情况,随机调查该城市某月的降水量.3、为了提高长跑成绩,小彬坚持锻炼并于每周日记录下1500m的成绩:小彬1500m成绩变化统计表如果要更清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5星期后的跑步成绩,你会如何选择?4、电视台调查某一节目的收视率,于是找了一些该节目的热心观众来作为调查的对象,用这样的方式得到的收视率准确吗?与实际收视率相比结果会怎样?5、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了名学生;(2)扇形统计图中的a=;(3)对于“参加公益活动为6天”的扇形,对应的圆心角为度.---------参考答案-----------一、单选题1、C【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系2、A【详解】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.3、D【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4、B【解析】【分析】根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案.【详解】解:根据题意得:42÷(1-20%-18%-21%-20%)=200(人),答:该校八年级学生总数为200人;故选B.【点睛】本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解一批灯泡的使用寿命,适合抽样调查,故A正确;B. 学校招聘教师,对应聘人员的面试适合普查,故B错误;C. 了解全班学生每周体育锻炼时间,适合普查,故C错误;D. 进入地铁站对旅客携带的包进行的安检适合普查,故D错误;故选A.【点睛】考查全面调查与抽样调查,掌握全面调查与抽样调查的特点是解题的关键.6、C【详解】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.7、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、B【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据9、C【详解】对綦江河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C10、C【分析】根据样本的定义,结合题意,即可得到答案.【详解】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C.【点睛】本题考查样本的定义,解题的关键是熟练掌握样本的定义.二、填空题1、6【分析】根据频数的定义:每个对象出现的次数求解即可.【详解】解:由题意知:范围在25~27这一组的频数是6,故答案为:6.【点睛】本题考查了频数的定义,属于基础问题.2、60 18 0.3【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.【详解】解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),故答案是:60;(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,故答案是:18,0.3.【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.3、0.15【分析】求出40~50元的人数,再根据频率=频数÷总数进行计算即可.【详解】解:“40~50元”的人数为:200−10−30−50−80=30(人),“40~50元”的频率为:30÷200=0.15,故答案为:0.15.【点睛】本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.4、①②【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、18°【分析】用360°×“不合格”的人数÷总人数即可得到答案.【详解】解:由统计图可知,“不合格”的人数是4人,总人数是32+24+20+4=80人∴“不合格”的圆心角度数=360°×480=18°,故答案为:18°.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,解题的关键在于能够准确从统计图中获取数据求解.三、解答题1、(1)40,108︒;(2)画图见解析【分析】(1)由B 组8人,占比20%,列式可得总人数,由C 组的占比乘以360︒可得圆心角的度数;(2)先计算出C 组的人数,再补全图形即可.【详解】解:(1)由B 组8人,占比20%,可得总人数为:820%=40÷人,所以C 组所在扇形的圆心角为:()140%10%20%360=108.---⨯︒︒故答案为:40,108︒(2)C 组的人数为:30%4012⨯=人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.2、(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性【分析】根据调查应具有代表性分析解答.【详解】解:(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性.【点睛】此题考查调查样本的选取,掌握样本的选取应具有代表性的特点是解题的关键.3、见解析.【分析】根据折线统计图的特点:能够清楚反映事物的变化情况,统计表的特点:可以将大量数据的分类结果清晰,一目了然的表达出来,由此进行求解即可.【详解】统计表和折线统计图都能反映出成绩的变化情况.相对而言,统计表反映的数据准确并且容易查找,但直观性不如统计图;统计图能直观地表示出变化情况,但从统计图中看出的数据往往不够准确,因此有的统计图会在相应的地方标上原始数据.在这个问题中,若想直观反映成绩变化,则选择折线统计图优势更明显;若想准确读出锻炼5星期后的成绩,则统计表更合适.【点睛】本题主要考查了统计图和统计表的选择,解题的关键在于能够熟练掌握二者的特点.4、总体包含热心观众、普通观众,其他人群等,若用热心观众来作为样本,不具备广泛性和代表性以及兼顾不同类型人群,往往会使得调查的结果比实际收视率高.【分析】根据总体包含的人群类型,用热心观众来作为样本,缺乏广泛性和代表性,兼顾不同类型人群即可得出结论.【详解】解:总体包含热心观众、普通观众,和其他人群,若用热心观众来作为样本,不具备广泛性和代表性,不能兼顾不同类型人群,用热心观众来作为调查的对象,用这样的方式得到的收视率不准确,往往会使得调查的结果比实际收视率高.【点睛】本题考查总体与样本,样本的选择要具有广泛性和代表性,兼顾不同类型人群是解题关键.5、(1)100;(2)25;(3)54.【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360°×百分比计算即可.【详解】解:(1)本次随机调查的学生数是:30÷30%=100(名);故答案为:100;(2)7天的人数有:100×5%=5(名),5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),则扇形统计图中的a%=25100×100%=25%.即a=25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×15100=54°;故答案为:54.【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.。
初中数学七年级下册第六章数据与统计图表专项测评(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况2、下列调查工作需采用普查方式的是()A.环保部门对长江某段水域的水污染情况的调查;B.电视台对正在播出的某电视节目收视率的调查;C.质检部门对各厂家生产的电池使用寿命的调查;D.企业在给职工做工作服前进行的尺寸大小的调查.3、请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A.①②B.①④C.②④D.②③4、某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40A B C D E F共6门选修课,选取了若干学生进行了我最喜欢的一门5、某学校准备为七年级学生开设,,,,,选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).下列说法不正确的是()A.这次被调查的学生人数为400人B.E对应扇形的圆心角为80C.喜欢选修课F的人数为72人D.喜欢选修课A的人数最少6、某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%7、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人8、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四9、某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%10、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40二、填空题(5小题,每小题4分,共计20分)1、中学生骑电动车上下学给交通安全带来隐患,为了了解某中学823个家长对“中学生骑电动车上下学”的态度,从中随机抽取150个家长进行调查,结果有136个家长持反对态度.则这次调查中样本容量是________.2、下列调查中,调查方式选择正确的是_____.①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.3、为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是 ___.4、甲、乙两公司经营同种产品,近年的销售量如图所示销量增速较快的是__公司.5、下列抽样调查较科学的有________.①小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝;②小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况;③小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;④小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查.三、解答题(5小题,每小题10分,共计50分)1、吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)如果用扇形统计图表示这次数学考试成绩,那么成绩在69.5~79.5范围内的扇形圆心角的度数为________度.2、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?3、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题:(1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______ ;(2)请将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名? (4)根据上图, 你可以获得什么信息?4、请将下面表格中的身高数据按3cm 分段,用频数直方图表示. 下表是某校七(2)班的同学入学信息表:5、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?(2)制订一个调查方案,展开调查.(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.---------参考答案-----------一、单选题1、C【解析】解:A.了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B.了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C.调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D.调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选C.2、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.C、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,适合抽样调查.D、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适合全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【详解】试题分析:在某大城市调查我国的扫盲情况,不具备代表性,故①正确;在十个城市的十所中学里调查我国学生的视力情况,具备代表性,故②不正确;在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况,具备代表性,故③不正确;在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不具备代表性,故④正确.故选B.4、D【详解】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.5、B【分析】根据表格和扇形图,通过计算,对每个选项分别进行判断,即可得到答案. 【详解】解:这次被调查的学生人数为:60÷15%=400(人),故A正确;∵D所占的百分比为:100100%=25%400⨯,A所占的百分比为:40100%=10%400⨯,∴E对应的圆心角为:360(118%10%15%12%25%)36020%72︒⨯-----=︒⨯=︒;故B错误;∵喜欢选修课F的人数为:40018%=72⨯(人),故C正确;∵喜欢选修课C有:40012%=48⨯(人),喜欢选修课E有:40020%=80⨯(人),∴喜欢选修课A的人数为40人,是人数最少的选修课;故D正确;故选:B.【点睛】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6、C【解析】∵816%50÷=,5064%=32⨯,∴选项A、B的说法正确.∵(116%64%)20%--=,∴图中“记不清”所对应的圆心角为:36020%=72⨯,∴选项C的说法错误.由样本数据可估计总体情况可知:选项D的说法正确.故选C.7、D【详解】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8、A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.9、B根据扇形统计图给出的信息逐项计算即可.【详解】试题分析:捐赠款的圆心角的度数为:360°×60%=216°.选项B错误故选B【点睛】本题考查扇形统计图.10、B【详解】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.二、填空题1、150【分析】根据样本容量是样本中包含的个体的数目,可得答案.【详解】解:为了解某中学823个学生家长对“中学生骑电动车上学”的态度,从中随机抽取了150个家长进行调查,故样本容量为150.故答案为:150.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、80【分析】根据样本容量是指样本中个体的数目,可得答案.【详解】解:为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是80.故答案为:80.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.【分析】根据两个统计图中数据的变化情况进行判断.【详解】解:甲公司2016年至2019年,销售量从4万件增加到7万件,而乙公司2016年至2019年,销售量从4万件增加到约8.2万件,因此乙公司增速较快,故答案为:乙.【点睛】本题考查折线统计图的意义,掌握折线统计图中数量的变化情况是正确判断的前提.5、①④.【分析】根据抽样调查的方式逐个分析即可【详解】小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝,故①的调查方法合适,符合题意;琪为了了解某市2007年的平均气温,应该查询每个月的气温情况,故②的调查方法不科学,不符合题意;小明为了了解初中三个年级学生的平均身高,应该在七、八、九年级各抽一个班学生做调查,故③的调查方法不科学,不符合题意;小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查,故③的调查方法符合题意.综上所述,符合题意的有①④.故答案为①④.【点睛】本题考查了抽样调查,理解抽样调查的方式是解题的关键.三、解答题1、(1)见解析;(2)72【分析】(1)根据69.5-79.5这一组的频数为10,频率为0.2,求出总人数,由此进行求解即可;(2)依据扇形的圆心角度数=360°×占比进行求解即可.【详解】解:(1)∵69.5-79.5这一组的频数为10,频率为0.2,∴总人数=10÷0.2=50人,∴59.5-69.5这一组的人数=50×0.1=5人,∴89.5-100.5这一组的频率=6÷50=0.12,列表如下:补全统计图如下:(2)由题意可得成绩在69.5~79.5范围内的扇形圆心角的度数=360°×0.20=72°,故答案为:72.【点睛】本题主要考查了频率与频数分布表,频数分布直方图,求扇形圆心角度数,解题的关键在于能够熟练掌握相关知识进行求解.2、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)200;81;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付;采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示:(3)()60451200630200+⨯=名. 答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.4、见解析【分析】根据所给信息表先填好身高的频数分布表,进而即可画出相应的频数分布直方图.【详解】解:由信息表可知:∴频数分布直方图如图所示:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用信息表画出相应的身高统计表是解决本题的关键.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)分析题意,根据题目信息,即可回答;(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;(3)根据抽样调查的特点,写一份调查报告即可.【详解】(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?对象:接受调查的人可选择抽样调查的调查方式;样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;(2)结合(1)中信息即可制定合理的调查方案,如:问卷调查表:简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;根据抽样调查的特点,自己写一份调查报告即可.【点睛】本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.。
浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)考试范围:第六单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 今年某市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,有下列说法:①这4万名考生的数学中考成绩的全体是总体;②每名考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的有A. 4个B. 3个C. 2个D. 1个2. 以下调查中,最适宜采用普查方式的是( )A. 检测某批次汽车的抗撞击能力B. 调查黄河的水质情况C. 调查全国中学生视力和用眼卫生情况D. 检查我国“神州八号”航天飞船各零部件的情况3. 近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2004年−2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;×100%;②与上一年相比,2007年人均年纯收入的增长率为3587−32553255③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到4140×(1+4140−3587)元.3587其中正确的是( )A. 只有①②B. 只有②③C. 只有①③D. ①②③4. 下图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A. 180万B. 200万C. 300万D. 400万5. 小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“”应填的颜色是( )A. 蓝B. 粉C. 黄6. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到扇形统计图如图所示:则下面结论中不正确的是( )A. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,种植收入减少7. 某校七、八、九三个年级共有学生800人,该校公布了反映各年级学生体育达标情况的两张统计图(如图),甲、乙、丙三名同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三名同学中,说法正确的是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 有三名候选人A,B,C竞选班长,要求班级的每名学生只能从三人中选一人(候选人也参与投票).经统计,A,B,C三名候选人得票数之比依次为6:3:1,若候选人B获得票数的频数为15,则该班级共有( )A. 44人B. 46人C. 48人D. 50人9. 某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为( )棉花纤维长度x0≤x<88≤x<1616≤x<2424≤x<3232≤x<40频数12863A. 0.8B. 0.7C. 0.4D. 0.210. 为了解某校八年级400名学生60秒跳绳的次数,随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图,每组数据包括左端值,不包括右端值,如最左边第一组的次数x为:60≤x<80.则以下说法正确的是( )A. 该年级50名学生跳绳次数不少于100次的占80%B. 大多数学生跳绳次数在140~160范围内C. 60秒跳绳次数最多的是160次D. 由样本可以推断全年级400人中跳绳次数在60~80次的大约有48人11. 某中学八年级甲、乙两个班进行了一次跳远测试,测试人数每班都为40人,每个班学生的跳远成绩分为A,B,C,D四个等级,绘制的统计图如图.根据以上统计图提供的信息,下列说法错误的是( )A. 甲班A等级的人数在甲班中最少B. 乙班D等级的人数比甲班少C. 乙班A等级的人数与甲班一样多D. 乙班B等级的人数为14人12. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A. 280B. 240C. 300D. 260第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在调查某地区老年人的健康状况中,个体是______.14. 某校组织学生开展“八荣八耻”宣传教育活动,其中有30%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为______部分.15. 一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有______人.16. 某校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.课外阅读时间频数表课外阅读时间t(min)频数10≤t<30430≤t<50850≤t<70a70≤t<901690≤t<1102合计50表中a=.三、解答题(本大题共9小题,共72.0分。
初中数学七年级下册第六章数据与统计图表综合训练(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是().A.B.C.D.2、体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16% B.24% C.30% D.40%3、某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是( )A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系4、要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第--课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程5、为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工6、今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的中考数学成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000. 其中说法正确的有( )A.4个B.3个C.2个D.1个7、以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况 B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量8、对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人9、下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件10、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见二、填空题(5小题,每小题4分,共计20分)1、某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有___________.2、2021年6月6日是全国爱眼日,某校对七年级学生进行了视力监测,收集了部分学生的监测数据,并绘制成了频数分布直方图,从左至右每个小长方形的高的比为2:3:4:1,其中第三组的频数为80,则共收集了______名学生的监测数据.3、为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是________.4、科学技术的发展离不开大量的研究与试验,右面的统计图反映了某市2013~2017年研究与试验经费支出及增长速度的情况.根据统计图提供的信息,有以下三个推断:①2013~2017年,某市研究与试验经费支出连年增高;②2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2017年;③与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降.其中正确的有_______________.5、如图,是小垣同学某两天进行四个体育项目(ABCD)锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是__.三、解答题(5小题,每小题10分,共计50分)1、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?2、第41届世界博览会于2010年5月1日至2010年10月31日在上海举办,其中7月31日(截至18:00),经后滩、上南路、长清路、高科西路入园游客人数如下(数据来源:www.expo.cn):(“△”表示和2010年7月30日(截至18:00)相比入园人数增加的百分比)(1)2010年7月31日(截至18:00),以上4个入口共有多少游客入园?(2)2010年7月30日(截至18:00),后滩入口约有多少游客入园?(结果精到0.1万)(3)假设游客在园区内的餐饮消费为人均40元,请你设法估计:园区内一个月(以30天计)的餐饮营业额大约是多少?(4)从图中你还能获得哪些信息?3、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了名学生;(2)扇形统计图中的a=;(3)对于“参加公益活动为6天”的扇形,对应的圆心角为度.4、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?5、为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.---------参考答案-----------一、单选题1、D【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断.【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选D.【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象2、D【详解】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选D.3、D【详解】考点:扇形统计图.分析:利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.解答:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误.4、C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【详解】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.6、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7、A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选D.【点睛】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.9、D【详解】试题解析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选D.10、C【分析】根据样本的定义,结合题意,即可得到答案.【详解】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C .【点睛】本题考查样本的定义,解题的关键是熟练掌握样本的定义.二、填空题1、340【分析】用A 的学生有68名除以A 等级人数所占比例即可得.【详解】解: “综合素质”评价结果为“A ”的学生所占比例为:21233115=++++, ∴该校七年级学生共有:1683405÷=(名), 故答案为:340.【点睛】本题主要考查频数分布直方图,从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.2、200【分析】根据频率=频数除以总数进行计算即可.【详解】 解:4802002341÷=+++(人), 故答案为:200.【点睛】本题考查了频数分布直方图,掌握频率=频数除以总数是解答本题的关键.3、200【分析】结合题意,根据样本容量的性质分析,即可得到答案.【详解】根据题意,样本容量是200;故答案为:200.【点睛】本题考查了样本容量的知识;解题的关键是熟练掌握样本容量的性质,从而完成求解.4、①③【分析】根据统计图中2013~2017年,研究与试验经费支出的数据即可判断①;计算出2014~2017年每年的增长量即可判断②;根据统计图中的增长速度即可判断③.【详解】解:因为1185.01268.81384.01484.61595.3<<<<,所以2013~2017年,某市研究与试验经费支出连年增高,①正确;2014年比2013年实际增长量为1268.8118583.8-=(亿元),2015年比2014年实际增长量为13841268.8115.2-=(亿元),2016年比2015年实际增长量为1484.61384100.6-=(亿元),2017年比2016年实际增长量为1595.31484.6110.7-=(亿元),由此可知,2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2015年,则②错误;因为115.2>100.6,所以与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降,③正确;综上,正确的有①③,故答案为:①③.【点睛】本题考查了统计图,读懂统计图是解题关键.5、C【分析】根据统计图上的百分比求出两天的各项运动时间即可.【详解】解:由统计图可知,这两天锻炼时间,A有60×20%+40×20%=20(分钟),B有60×30%+40×20%=26(分钟),C有60×50%=30(分钟),D有40×60%=24(分钟),∵20<24<26<30,∴小垣这两天体育锻炼时间最长的项目是C,故答案为:C.【点睛】本题主要考查了扇形统计图的应用,熟记概念是解题的关键,注意第一天和第二天锻炼时间是不相同的.三、解答题1、见解析【分析】根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.【详解】如图所示在扇形统计图中,是从圆的圆心出发,用360︒乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用360︒乘该部分所占比例,得到角度再分割正方形.【点睛】本题考查了扇形统计图,理解扇形统计图是解题的关键.2、(1)27.1(万人);(2)约7.6万人;(3)2520万元;(4)答案不唯一.例如,能得到长清路入园人数增加的百分比最大.【分析】(1)将各入口入园人数相加即可.(2)设2010年7月30日(截至18:00),后滩入口有x万人入园,即可列出关于x的等式,求出x 即可.(3)同(2)计算出7月30日(截至18:00)其它入口入园人数,即可计算出从7月30日(截至18:00)到7月31日(截至18:00)入园的人数,再结合题意即可估算出园区内一个月(以30天计)的餐饮营业额.(4)答案不唯一,写出符合题意的答案即可.【详解】+++=(万人)(1) 8. 3 6.7 6.8 5.327.1(2)设2010年7月30日(截至18:00),后滩入口有x万人入园,根据题意,得:(19.2%)8.3x+=.解得:7.6x≈.故2010年7月30日(截至18:00),后滩入口有7.6万人入园.(3)与(2)同理可求出7月30日(截至18:00),高科西路进入游客约为4.9万人,长清路进入游客约为6.2万人,上南路进入游客约为6.3万人.∴7月30日(截至18:00)进入的总人数为7.6+4.9+6.2+6.3=25万人.∴从7月30日(截至18:00)到7月31日(截至18:00)入园的人数为:27.1-25=2.1万人.∵游客在园区内的餐饮消费为人均40元,∴估计园区内一个月(以30天计)的餐饮营业额大约是:2.140302520⨯⨯=万元.(4)答案不唯一.例如,能得到长清路入园人数增加的百分比最大.【点睛】本题考查扇形统计图的相关知识,由样本估计总体.从扇形统计图中获取必要的信息是解答本题的关键.3、(1)100;(2)25;(3)54.【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360°×百分比计算即可.【详解】解:(1)本次随机调查的学生数是:30÷30%=100(名);故答案为:100;(2)7天的人数有:100×5%=5(名),5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),则扇形统计图中的a%=25100×100%=25%.即a=25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×15100=54°;故答案为:54.【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.4、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.5、见解析【分析】绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.【详解】解:第一步,计算最大值与最小值的差:在所给的数据中,最大值是7.2,最小值是1.5,它们的差是7.2-1.5=5.7,第二步,决定组距与组数:由于最大值与最小值的差是5.7,如果取组距为1,那么由于5.77=5110,可分成6组,组数合适,于是取组距为1,组数为6,第三步,列频数分布表:第四步,画频数直方图:【点睛】本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.。
浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(较易)(含答案解析)考试范围:第六单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是( )A. 了解每一名学生吃零食情况B. 了解每一名女生吃零食情况C. 了解每一名男生吃零食情况D. 每班各抽取7男7女,了解他们吃零食情况2. 某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是( )A. 测试该市某一所中学初中生的体重B. 测试该市某个区所有初中生的体重C. 测试全市所有初中生的体重D. 每区随机抽取5所初中,测试所抽学校初中生的体重3. 某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有( )A. 140B. 120C. 220D. 1004. 下面的折线图描述了杭州市区某一天的气温变化情况,根据图象提供的信息,下列结论正确的是( )A. 这一天的温差8℃B. 最低气温是24℃C. 从4:00到14:00气温逐渐上升D. 从0:00到6:00气温逐渐下降5. 如图是一个还没画完整的扇形统计图,整个圆表示某班参加体育活动的总人数,其中参加立定跳远的人数占总人数的35%,则图中表示立定跳远人数的扇形是( )A. M.B. N.C. P.D. Q.6. 某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )A. 75人B. 90人C. 108人D. 150人7. 一次数学比赛中,成绩在90分以上的有12人,频率为0.2,则参加比赛的共有( )A. 40人B. 50人C. 60人D. 70人8. 某青年足球队的14名队员的年龄如表:年龄(单位:岁)19202122人数(单位:人)3722则出现频数最多的是( )A. 19岁B. 20岁C. 21岁D. 22岁9. 在频数直方图中,用来表示各组频数的是每个矩形的( )A. 长B. 宽(高)C. 周长D. 面积10. 市某视力健康管理中心对全市初中生的视力情况进行了一次抽样调查,如图是利用调查所得数据绘制的频数直方图,则这组数据的组数与组距分别是( )A. 4和0.20B. 4和0.30C. 5和0.20D. 5和0.3011. 进行数据的收集调查时,在明确调查问题、确定调查对象后一般还要完成以下4个步骤: ①展开调查; ②得出结论; ③记录结果; ④选择调查方法.但它们的顺序弄乱了,正确的顺序是( )A. ④ ① ③ ②B. ③ ④ ① ②C. ④ ③ ① ②D. ② ④ ③ ①12. 某校调查了150名学生最喜爱的体育活动,制成了下图所示的扇形统计图.在被调查的学生中,选羽毛球的学生人数的百分比为( )A. 10%B. 20%C. 30%D. 40%第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 为了了解某地区45000名七年级学生的睡眠情况,运用所学统计知识解决上述问题所要经历的几个主要步骤: ①抽样调查; ②设计调查问卷; ③用样本估计总体; ④整理数据; ⑤分析数据,按操作的先后进行排序为.(只写序号)14. 学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计两人中新手是.15. 已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为1:3:4:2,则第三组的频数为.16. 某项目小组对新能源汽车充电成本进行抽测,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如下图所示,其中充电成本在300元/月及以上的车有辆.三、解答题(本大题共9小题,共72.0分。
初中数学七年级下册第六章数据与统计图表同步训练(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A.①②B.①④C.②④D.②③A B C D E F共6门选修课,选取了若干学生进行了我最喜欢的一门2、某学校准备为七年级学生开设,,,,,选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).下列说法不正确的是()A.这次被调查的学生人数为400人B.E对应扇形的圆心角为80C.喜欢选修课F的人数为72人D.喜欢选修课A的人数最少3、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,404、某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1105、为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8D.选“感恩”的人数最多6、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查7、某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为()A.3项B.4项C.5项D.6项8、如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是A.1月至2月B.2月至3月C.3月至4月D.4月至5月9、我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图B.扇形图C.折线图D.频数分布直方图10、下列选项中,显示部分在总体中所占百分比的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图二、填空题(5小题,每小题4分,共计20分)1、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)2、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.3、为了了解九年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间不低于9小时的有____人.4、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是______.5、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.三、解答题(5小题,每小题10分,共计50分)1、每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛.学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为.(3)将条形统计图补充完整.2、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?3、下表是云南某地气象站本周平均气温变化(当天与上一天的变化)的情况:(记当日气温上升为正).(1)上周星期日的平均气温为15℃,本周日与上周日相比,气温是升高了还是下降了?升或降了多少℃?(2)以上周日平均气温作为0点,用折线统计图表示本周的气温变化情况.4、下面是A,B两球从不同高度自由下落到地面后反弹高度的统计图.(1)比较两个球反弹高度的变化情况,哪个球的弹性大?(2)如果两个球下落的起始高度继续增加,那么你认为A球的反弹高度会继续增加吗?B球呢?(3)分别比较A球、B球的反弹高度和起始高度,你认为反弹高度会超过起始高度吗?5、调查你们班同学出生时的体重(或身高),然后将数据适当分组,并绘制相应的频数直方图,看看你们班大多数同学出生时的体重(或身高)处于哪个范围.---------参考答案-----------一、单选题1、B【详解】试题分析:在某大城市调查我国的扫盲情况,不具备代表性,故①正确;在十个城市的十所中学里调查我国学生的视力情况,具备代表性,故②不正确;在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况,具备代表性,故③不正确;在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不具备代表性,故④正确. 故选B.2、B【分析】根据表格和扇形图,通过计算,对每个选项分别进行判断,即可得到答案.【详解】解:这次被调查的学生人数为:60÷15%=400(人),故A正确;∵D所占的百分比为:100100%=25%400⨯,A所占的百分比为:40100%=10%400⨯,∴E对应的圆心角为:360(118%10%15%12%25%)36020%72︒⨯-----=︒⨯=︒;故B错误;∵喜欢选修课F的人数为:40018%=72⨯(人),故C正确;∵喜欢选修课C有:40012%=48⨯(人),喜欢选修课E有:40020%=80⨯(人),∴喜欢选修课A的人数为40人,是人数最少的选修课;故D正确;故选:B.【点睛】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3、B【详解】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.4、A【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.【详解】解:“良”和“优”的人数所占的百分比:852518728525++++×100%=55%,∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.5、C【分析】根据条形统计图与扇形统计图中的相关数据进行计算并逐一判断即可得解.【详解】A.由统计图可知“奉献”对应的人数是108人,所占比为18%,则调查的样本容量是10818%600÷=,故A选项正确;B.根据扇形统计图可知“责任”所对的圆心角是72︒,则所对人数为72600120360︒⨯=︒人,故B选项正确;C.根据条形统计图可知“生命”所对的人数为132人,则所对的圆心角是13236079.2600︒⨯=︒,故C选项错误;D.根据“敬畏”占比为16%,则对应人数为60016%96⨯=人,则“感恩”的人数为----=人,人数最多,故D选项正确,60096132108120144故选:C.【点睛】本题主要考查了通过条形统计图与扇形统计图之间各部分数量与占比的关系对总体,未知部分对应数量以及对应圆心角的求解,数量掌握相关计算方法是解决本题的关键.6、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似来进行判断.【详解】A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、C【分析】获奖人次共计17+3+1+5+2+1+12+2+1=44人次,减去只获两项奖的13人计13×2=26人次,则剩下44-13×2=18人次,27-13=14人,这14人中有只获一次奖的,有获三次以上奖的.【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的14人中的一人获奖最多,其余14-1=13人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-13=5项.故选C.【点睛】本题主要考查从统计表中获取信息的能力,解决本题的关键是要熟练掌握从统计表中获取信息的方法.8、C【分析】根据折线图的数据,分别求出相邻两个月的音乐手机销售额的变化值,比较即可得解:【详解】解:1月至2月,30﹣23=7万元,2月至3月,30﹣25=5万元,3月至4月,25﹣15=10万元,4月至5月,19﹣14=5万元,所以,相邻两个月中,用电量变化最大的是3月至4月.故选C.9、B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能反映各个部分占总体的百分比,折线统计图能反映样本或总体的趋势,频数分布直方图能反映样本或总体的分布情况,熟练掌握各统计图的特点是解题的关键.10、A【详解】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.故在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图;故选A.二、填空题1、全面调查【分析】根据全面调查和抽样调查的概念判断即可.【详解】解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.2、108°【分析】先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:90100%30%300⨯=,利用360°×30%计算即可.【详解】解:统计的人数为:60+90+150=300人,骑自行车的人数为:90人,骑自行车的人数所占百分比为:90100%30% 300⨯=,∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.故答案为:108°.【点睛】本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.3、32.【分析】根据折线图可知一周参加体育锻炼时间是9、10/11小时的人数相加即可求解.【详解】由图可知,一周参加体育锻炼时间不小于9小时的人数是18+10+4=32(人),故答案为:32.【点睛】本题考查折线统计图,解题的关键是观察统计图得出其横纵坐标表示的量.4、10【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【详解】解:∵由折线统计图可知,15日温差=4−(−3)=7;16日温差=4−(−6)=10;17日温差=2−(−6)=8;18日温差=2−(−2)=4;19日温差=1−(−5)=6;20日温差=1−(−1)=2;∴最大的温差是10.故答案为:10.【点睛】本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.5、①②【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.三、解答题1、(1)40;(2)90°;(3)见解析.【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图.【详解】解:(1)18÷45%=40(人),故答案为:40;(2)360°×1040=90°,故答案为:90°;(3)40﹣4﹣10﹣18=8(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键.2、见解析【分析】根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.【详解】如图所示在扇形统计图中,是从圆的圆心出发,用360︒乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用360︒乘该部分所占比例,得到角度再分割正方形.【点睛】本题考查了扇形统计图,理解扇形统计图是解题的关键.3、(1)本周日与上周日相比,气温下降了,降了1℃;(2)见解析【分析】(1)把表中数据相加,得负为下降,得正为上升;(2)根据图表中的气温变化情况计算出这七天的气温,从而画出折线统计图即可.【详解】解:(1)3.5+8.9+2.6﹣7.6+6.5﹣9.4﹣5.5=﹣1,答:本周日与上周日相比,气温下降了,降了1℃;(2)星期一气温:15+3.5=18.5(℃);星期二气温:18.5+8.9=27.4(℃);星期三气温:27.4+2.6=30(℃);星期四气温:30﹣7.6=22.4(℃);星期五气温:22.4+6.5=28.9(℃);星期六气温:28.9﹣9.4=19.5(℃);星期日气温:19.5﹣5.5=14(℃).【点睛】本题主要考查了有理数加减的实际应用,折线统计图,解题的关键在于能够熟练掌握有理数加减计算法则.4、(1)A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)不会超过起始高度.【分析】(1)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;(2)由折线统计图可知A球的反弹高度变化趋势还非常明显,而B球的反弹高度变化趋势趋于平缓,由此即可判断;(3)从折线统计图可知,反弹的高度是不会超过下路的起始高度的.【详解】解:(1)比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)从统计图上看,反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.【点睛】本题主要考查了折线统计图,解题的关键在于能够准确读懂统计图.5、见解析【分析】先调查,将我们班同学出生时候的体重数据进行分组列表,然后绘制频数直方图,进而分析可得学出生时的题中处于那个范围.【详解】调查所得数据,分组如下:绘制频数直方图如下:从频数直方图可知,大多数同学出生时的体重处于3.6-4.0kg之间.【点睛】本题考查了调查与统计,绘制频数分布表,绘制频数直方图,掌握频数分布表和直方图是解题的关键.。