2011广东省中考数学试题-解析版
- 格式:doc
- 大小:1.18 MB
- 文档页数:11
专题11:实际问题与一元二次方程-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广东广州市·九年级一模)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛240场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( ) A .x (x ﹣1)=240 B .12x (x ﹣1)=240 C .x (x +1)=240 D .12x (x +1)=240 【答案】A【解析】根据参加比赛的球队数量、总共要比赛的场数列出方程即可得. 【解答】解:由题意,可列方程为(1)240x x -=, 故选:A .【点评】本题考查了列一元二次方程,理解题意,正确找出等量关系是解题关键.2.(2021·广东广州市·九年级一模)一种药品原价每盒25元经过两次降价后每盒16元.设两次降价的百分率都相同为x ,则x 满足方程( ) A .()2251216x -= B . ()225116x -= C .()2161225x +=D .()216125x+=【答案】B【解析】等量关系为:原价×(1-下降率)2=16,把相关数值代入即可. 【解答】解:第一次降价后的价格为25(1-x ),第二次降价后的价格为25(1-x )×(1-x )=25×(1-x )2, ∴列的方程为25(1-x )2=16, 故选:B .【点评】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 3.(2021·广东深圳市·九年级二模)有一个模拟传染病传播的电子游戏模型:在一个方框中,先放入足够多的白球(模拟健康人),然后在框中同时放入若干个红球(模拟最初感染源),程序设定,每经过一分钟,每个红球均恰好能使方框中0R 个白球同时变成红球(0R 为程序设定的常数),若最初放入的白球数为400个,红球数为4个,从放入红球开始,经过2分钟后,红球总数变为64个,则0R 应满足的方程是( )A .4(1+0R )=64B .4(1+0R )=400C .4()201R +=64 D .4()201R +=400【答案】C【解析】原有4个红球,1分钟后红球数为0(44)R +个,2分钟新增加的红球数为0(44)x R +个,由2分钟后,红球总数变为了64个列方程可得结论. 【解答】根据题意得:00044(44)64R R R +++=,即:204(1)64R +=,故选:C .【点评】考查了由实际问题抽象出一元二次方程的知识,了解增长率问题是解题的关键.4.(2021·广东九年级专题练习)目前以5G 等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G 用户2万户,计划到2021年底全市5G 用户数累计达到8.72万户.设全市5G 用户数年平均增长率为x ,则x 值为( ) A .20% B .30%C .40%D .50%【答案】C【解析】先用含x 的代数式表示出2020年底、2021年底5G 用户的数量,然后根据2019年底到2021年底这三年的5G 用户数量之和=8.72万户即得关于x 的方程,解方程即得答案. 【解答】解:设全市5G 用户数年平均增长率为x ,根据题意,得:()()2221218.72x x ++++=,解这个方程,得:10.440%x ==,2 3.4x =-(不合题意,舍去). ∴x 的值为40%. 故选:C .【点评】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.5.(2021·广东广州市·西关外国语学校九年级一模)如图,Rt △ABC 中,∠C =90°,AB =5cm ,AC =4cm ,点P 从点A 出发,以1cm/s 的速度沿A→C 向点C 运动,同时点Q 从点A 出发,以2cm/s 的速度沿A→B→C 向点C 运动,直到它们都到达点C 为止.若△APQ 的面积为S (cm 2),点P 的运动时间为t (s ),则S 与t 的函数图象是( )A .B .C .D .【答案】D【解析】分两种情况讨论:当502t 时,过Q 作QD AC ⊥交AC 于点D ,12APQ S AP QD ∆=⨯⨯;当542t <时,APQ ABC ABQ CPQ S S S S -∆∆∆∆=-.【解答】解:①当502t时,点Q 在AB 上, 2AQ t ∴=,AP t =,过Q 作QD AC ⊥交AC 于点D ,Rt ABC ∆中,90C ∠=︒,5AB cm =,4AC cm =,3BC cm ∴=,∴QD AQBC BC=, 65QD t ∴=,211632255APQ S AP QD t t t ∆=⨯⨯=⨯⨯=,②当542t <时,点Q 在BC 上, 2211134(4)(82)4(25)4(2)4222APQ ABC ABQ CPQ S S S S t t t t t t -∆∆∆∆=-=⨯⨯-⨯-⨯--⨯⨯-=-+=--+, 综上所述,正确的图象是D . 故选:D .【点评】本题考查动点运动,三角形面积.B 点是Q 点运动的分界点,将运动过程分两种情况进行讨论是解题的关键.二、填空题6.(2021·广东九年级专题练习)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有_________员工人. 【答案】50【解析】设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信,根据全公司共发出2450条短信,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信, 依题意,得:(1)2450x x -=,解得:150x =,249x =-(不合题意,舍去). 故答案为:50.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.(2021·广东九年级专题练习)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______. 【答案】20%【解答】解:设该药品平均每次降价的百分率是x ,根据题意得25×(1-x )(1-x )=16, 整理得,解得x=0.2或1.8(不合题意,舍去); 即该药品平均每次降价的百分率是20%.8.(2021·广东九年级专题练习)如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为x m ,则根据题意,可列方程为_______.【答案】(12-x )(8-x )=77【解析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面积公式,列出关于道路宽的方程求解.【解答】道路的宽为x米.依题意得:(12-x)(8-x)=77,故答案为(12-x)(8-x)=77.【点评】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系.9.(2021·广东九年级专题练习)圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.【答案】x(x﹣1)=110【解析】设这个小组有x人,要求他们之间互送贺卡,即除自己外,每个人都要求送其他的人一张贺卡,即每个人要送x-1张贺卡,所以全组共送x(x-1)张,又知全组共送贺卡110张,由送贺卡数相等为等量关系,列出方程即可.【解答】设这个小组有x人,则每人应送出x−1张贺卡,由题意得:x(x−1)=110,故答案为x(x−1)=110.【点评】本题考查了由实际问题抽象出二元一次方程,熟练掌握该知识点是本题解题的关键. 10.(2021·广东九年级专题练习)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.【答案】12x(x﹣1)=21【解答】【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为12x(x﹣1),即可列方程.【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:12x(x﹣1)=21,故答案为12x(x﹣1)=21.【点评】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 11.(2021·广东九年级专题练习)参加一次足球联赛的每两队之间都进行两场比赛,共比赛90场比赛,共有____个队参加比赛.【答案】10【解答】设有x支球队,由题意则有:x(x-1)=90,解得:x1=10,x2=-9(舍去),所以共有10个队参加比赛,故答案为10.12.(2021·广东广州市·九年级一模)如图,ABC 中90A ∠=︒,5AB =,12AC =,点D 为动点,连接BD 、CD ,BDC ∠始终保持为90︒,线段AC 、BD 相交于点E ,则DEBE的最大值为__________.【答案】45【解析】设AE x =,从而可得12CE x =-,先利用勾股定理可得225BE x =+判定与性质可得AE BEDE CE =,求出DE 的值,从而可得DE BE的值,然后利用一元二次方程、二次函数的性质求解即可得.【解答】解:由题意,设AE x =,则12CE x =-,22225BE AB AE x ∴+=+在ABE △和DCE 中,90A D AEB DEC ∠=∠=︒⎧⎨∠=∠⎩,ABE DCE ∴~,AE BE DE CE ∴=,即225x x DE += 解得225DE x=+,则2(12)25x x E x D BE -=+, 令(0)DE k k BE =>,则2(12)25x x k x-+=, 整理得:2(1)12250k x x k +-+=,关于x 的一元二次方程2(1)12250k x x k +-+=有实数根,∴方程根的判别式144425(1)0k k ∆=-⨯+≥,即22525360k k +-≤, 令22525360k k +-=,解得1249,55k k ==-, 由二次函数2252536y k k =+-的性质可知,当0y ≤时,9455k -≤≤, 则k 的最大值为45, 即DE BE的最大值为45,故答案为:45.三、解答题13.(2021·东莞市东莞中学初中部九年级一模)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【答案】每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台.【解析】根据题意可直接设每轮传染x 台,从而列出两轮后共计传染数量为()21x +台,建立一元二次方程求解即可,求出每轮传染数之后即可判断三轮传染之后的总数,即可得出结论. 【解答】设每轮感染中平均1台电脑会感染x 台电脑. 根据题意可列:()1181x x x +++=, 解得:18x =,210x =-(舍去).∴3轮感染后,被感染得电脑为:81818729700+⨯=>.答:每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台. 14.(2021·广东阳江市·九年级一模)甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整? 【答案】(1)这个降价率为10%;(2)该商品在原售价的基础上,再降低10元.【解析】(1)设调价百分率为x ,根据售价从原来每件40元经两次调价后调至每件32.4元,可列方程求解. (2)根据已知条件求出多售的件数,根据该商场希望该商品每月能盈利10000元列出方程,求解即可. 【解答】解:(1)设这种商品平均降价率是x ,依题意得:40(1﹣x )2=32.4, 解得:x 1=0.1=10%,x 2=1.9(舍去); 答:这个降价率为10%;(2)设降价y元,则多销售y÷0.2×10=50y件,根据题意得(40﹣20﹣y)(500+50y)=10000,解得:y=0(舍去)或y=10,答:该商品在原售价的基础上,再降低10元.15.(2021·广东华侨中学九年级二模)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.【答案】(1)1秒;(2)不可能,见解析【解析】(1)经过x秒钟,△PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看△PBQ的面积能否等于7cm2,只需令12×2x(5﹣x)=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【解答】解:(1)设经过x秒以后△PBQ面积为4cm2,根据题意得12(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面积等于4cm2;(2)由(1)同理可得12(5﹣x)2x=7.整理,得x2﹣5x+7=0,因为b2﹣4ac=25﹣28<0,所以,此方程无解.所以△PBQ的面积不可能等于7cm2.【点评】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.16.(2021·广东惠州市·九年级二模)某校有200台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染. (1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,______轮感染后机房内所有电脑都被感染. 【答案】(1)3台;(2)四【解析】(1)设每轮感染中平均一台电脑会感染x 台电脑,根据“如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染”,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)分别求出三轮及四轮感染后感染病毒电脑的数量,结合机房共(2001)+台电脑,即可得出结论. 【解答】解:(1)设每轮感染中平均一台电脑会感染x 台电脑, 依题意得:2(1)16+=x ,解得:13x =,25x =-(不合题意,舍去). 答:每轮感染中平均一台电脑会感染3台电脑.(2)经过三轮感染后感染病毒的电脑数量为16(13)64⨯+=(台), 经过四轮感染后感染病毒的电脑数量为64(13)256⨯+=(台), 2562001>+,∴四轮感染后机房内所有电脑都被感染.故答案为:四.17.(2021·清远市清新区凤霞中学九年级一模)学海书店购一批故事书进行销售,其进价为每本40元,如果按每本故事书50元进行出售,每月可以售出500本故事书,后来经过市场调查发现,若每本故事书涨价1元,则故事书的销量每月减少20本.(1)若学海书店要保证每月销售此种故事书盈利6000元,同时又要使购书者得到实惠,则每本故事书需涨价多少元?(2)若使该故事书的月销量不低于300本,则每本故事书的售价应不高于多少元? 【答案】(1)5元;(2)60元【解析】(1)设每本故事书需涨价x 元,根据“每本故事书涨价1元,则故事书的销量每月减少20本”表示出销售量,由售价-进价=利润列出方程,求出方程的解即可得到结果;(2)设每本故事书的售价为m 元,由关键描述语“该故事书的月销量不低于300本”列出不等式. 【解答】(1)解:设每本故事书需涨价x 元,由题意,得(5040)(50020)6000x x +--=,解得15=x ,210x =(不合题意,舍去). 答:每本故事书需涨5元;(2)解:设每本故事书的售价为m 元, 则()5002050300m --≥,解得60m ≤,答:每本故事书的售价应不高于60元.【点评】本题考查了一元二次方程的应用,弄清“每本故事书涨价1元,则故事书的销量每月减少20本”是解本题的关键.18.(2021·广东佛山市·九年级一模)春节期间,佛山连锁超市派调查小组调查某种商品的销售情况,下面是调查后小李与其他两位成员交流的情况. 小李:“该商品的进价为50元/件.”成员甲:“当定价为60元/件时,平均每天可售出800件.” 成员乙:“若售价每提高5元,则平均每天少售出100件.” 根据他们的对话,完成下列问题:(1)若售价定为65元/件时,平均每天可售出______件;(2)若超市希望该商品平均每天能盈利12000元,且尽可能扩大销售量,则该商品应该怎样定价? 【答案】(1)700;(2)该商品应该定价为70元/件 【解析】(1)根据题意,直接列出算式,即可求解;(2)设该商品应该定价为x 元/件,列出关于x 的方程,进而即可求解. 【解答】解:(1)由题意得:800-(65-60)÷5×100=700(件); (2)设该商品应该定价为x 元/件, 由题意得:()6050800100120005x x -⎛⎫--⋅= ⎪⎝⎭,解得:170x =,280x =, ∵尽可能扩大销售量, ∴70x =,答:该商品应该定价为70元/件.19.(2021·广东江门市·九年级一模)某服装店自2018年以来,销售成衣数量在稳健地上涨,2018年全年售出10000件成衣,2020年全年售出14400件成衣.(1)求该服装店2018年到2020年成衣销售量的年平均增长率;(2)若服装店售出成衣数量还将保持相同的年平均增长率,请你预算2022年该服装店售出成衣将达到多少件?【答案】(1)20%;(2)20736件【解析】(1)设该服装店2018年到2020年成衣销售量的年平均增长率为x .2019年成衣销售量10000+10000x =10000(1+x);2020年成衣销售量在2019年基础上平均增长率为x ,10000(1+x)+ 10000(1+x) x =10000(1+x) (1+x)=10000 (1+x)2,利用2020年售出14400件成衣构造方程求解即可. (2)利用增长率公式计算即可【解答】解:(1)设该服装店2018年到2020年成衣销售量的年平均增长率为x . 依题意,得()210000114400x +=,解得10.220%x ==,2 2.2x =-(舍去).答:该服装店2018年到2020年成衣销售量的年平均增长率为20%.(2)()214400120%20736⨯+=(件).答:2022年该服装店售出成衣将达到20736件.【点评】本题考查列一元二次方程解增长率应用题,掌握列一元二次方程解增长率应用题的方法与步骤,抓住等量关系用两种方式表示同一量,列出方程是解题关键.20.(2021·广东九年级专题练习)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【答案】(1)504万元;(2)20%.【解析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x ,则十一黄金周的月营业额为350(1+x )2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.【解答】解:(1)第七天的营业额是450×12%=54(万元), 故这七天的总营业额是450+450×12%=504(万元). 答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x ,依题意,得:350(1+x )2=504,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.21.(2021·广东华侨中学九年级二模)已知:如图所示,在ABC 中,90B ∠=,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,当其中一点到达终点后,另外一点也随之停止运动.() 1如果P 、Q 分别从A 、B 同时出发,那么几秒后,PBQ 的面积等于24cm ?()2在()1中,PQB 的面积能否等于27cm ?请说明理由.【答案】(1)1秒后PBQ 的面积等于24cm ;(2) PBQ 的面积不可能等于27cm .【解析】(1)经过x 秒钟,△PBQ 的面积等于4cm 2,根据点P 从A 点开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解; (2)看△PBQ 的面积能否等于7cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【解答】(1)设经过x 秒以后△PBQ 面积为4cm 2,根据题意得12(5-x )×2x=4, 整理得:x 2-5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ 的面积等于4cm 2; ()2仿()1得()15272x x -=,整理,得2570x x -+=,因为2425280b ac -=-<,所以,此方程无解.所以PBQ 的面积不可能等于27cm .【点评】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.22.(2021·广东惠州市·九年级一模)随着疫情形势稳定向好,“复工复产”成为主旋律.某生产无人机公司统计发现,公司今年2月份生产A 型无人机2000架,4月份生产A 型无人机达到12500架.(1)求该公司生产A 型无人机每月产量的平均增长率;(2)该公司还生产B 型无人机,已知生产1架A 型无人机的成本是200元,生产1架B 型无人机的成本是300元,现要生产A 、B 两种型号的无人机共100架,其中A 型无人机的数量不超过B 型无人机数量的3倍,公司生产A 、B 两种型号的无人机各多少架时才可能使生产成本最少?【答案】(1)150%;(2)公司生产A 型号无人机75架,生产B 型号无人机25架成本最小【解析】(1)直接利用连续两次平均增长率求法得出等式求出答案;(2)根据题意求出a 的取值范围,再利用一次函数增减性得出答案.【解答】(1)设该公司生长A 型无人机每月产量的平均增长率为x ,根据题意可得:2000(1+x )2=12500,解得:x 1=1.5=150%,x 2=﹣3.5(不合题意舍去),答:该公司生长A 型无人机每月产量的平均增长率为150%;(2)设生产A 型号无人机a 架,则生产B 型号无人机(100﹣a )架,需要成本为w 元,依据题意可得: a≤3(100﹣a ),解得:a≥75,w =200a+300(100﹣a )=﹣100a+30000,∵﹣100<0,∴当a 的值增大时,w 的值减小,∵a 为整数,∴当a =75时,w 取最小值,此时100﹣75=25,w =﹣100×75+30000=22500,∴公司生产A 型号无人机75架,生产B 型号无人机25架成本最小.23.(2021·广州大学附属中学九年级一模)如图,在△ABC 中,∠B =90°,AB =5cm ,BC =7cm ,点Q 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点P 从点B 开始沿BC 边向点C 以2cm/s 的速度移动. (1)如果P 、Q 两点同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)△PBQ 的面积能否等于7cm 2?试说明理由.【答案】(1)1秒或4秒;(2)不能,理由见解析【解析】(1)点Q 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点P 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,表示出BQ 和BP 的长度,利用三角形的面积公式可列方程求解.(2)参照(1)的解法列出方程,根据根的判别式来判断该方程的根的情况.【解答】解:(1)设t 秒后,△PBQ 的面积等于42cm .则()15242t t -⨯= , 整理,得t 2﹣5t +4=0,解得 1t =1,2t =4.答:如果P 、Q 两点同时出发,那么1秒或4秒后,△PBQ 的面积等于42cm ;(2)△PBQ 的面积能不能等于72cm 理由如下:设x 秒后,△PBQ 的面积等于42cm 则()15272t t -⨯=, 整理,得t 2﹣5t +7=0,则△=25﹣28=﹣3<0,所以该方程无解.∴△PBQ 的面积不能等于72cm .24.(2021·深圳市南山外国语学校(集团)九年级一模)某环保公司研发了甲、乙两种智能设备,可将垃圾处理变为新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知每吨燃料棒的成本为100元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?【答案】(1)甲设备60万元/台,乙设备80万元/台;(2)188元【解析】(1)设甲智能设备单价x 万元,则乙单价为(14﹣x )万元,利用购买的两种设备数量相同,列出分式方程求解即可;(2)设每吨燃料棒在200元基础上降价y 元,根据题意列出方程,求解后根据降价幅度不超过8%,即可得出售价.【解答】解:(1)设甲智能设备单价x 万元,则乙单价为(14﹣x )万元, 由题意得:360x =480140x-, 解得:x =60,经检验x =60是方程的解,∴x =60,140﹣x =80,答:甲设备60万元/台,乙设备80万元/台;(2)设每吨燃料棒在200元基础上降价y 元,由题意得:(200100)(3505)36080y y --+=,解得:112y =,218y =,∵2008%y ≤⨯,即16y ≤,∴y =12,200﹣y =188,答:每吨燃料棒售价应为188元.。
第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。
出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。
中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019・广州)| - 6|=( )A. - 6B. 6C.-丄D.丄6 62. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) 3. (3分)(2019•广州)如图,有一斜坡AB,坡顶B 离地面的高度BC 为30,”,斜坡的倾 斜角是"AC,若taS 送,则此斜坡的水平距离AC 为(的切线条数为( )6. (3分)(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120 个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的 是(A. 120 = 150B. 120 ==150Xx-8 x+8XC. 120= 150D. 120 ==150 x-8XXx+87. (3分)(2019・广州)如图,口ABCD 中,对角线AC, BD 相交于点O, 且E, F, G, H 分别是AO, BO, CO, DO 的中点,则下列说法正确的是()A. 5B. 5.2C. 6D. 6.4B. 50mC. 30mD. 12m4. (3分)(2019•广州)下列运算正确的是( A. - 3 - 2= - 1C. x 3*x 5=x 15B. 3X (-丄)2=-丄335. (3分)(2019・广州) 平面内,OO 的半径为1,点P 到O 的距离为2,过点P 可作OOA. 0条B. 1条C. 2条D.无数条A. 75mA.EH=HGB.四边形EFGH是平行四边形C.AC±BDD.AABO的面积是△EFO的面积的2倍& (3分)(2019•广州)若点A ( - 1, yi), B(2,加,C(3,加在反比例函数■的x 图象上,则yi, y2,丁3的大小关系是()A. y3<j2<yiB. yi<yi<y3C. yi<y3<j2D. yi<j2<j39.(3分)(2019•广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()10.(3分)(2019・广州)关于x的一元二次方程(^ - 1)x-k+2=0有两个实数根xi,XI,若(M1 - X2+2)(XI - X2 - 2)+2X1X2= - 3,则斤的值()A. 0 或2B. - 2 或2C. - 2D. 2二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C 在直线/上,PBM, PA^6cm, PB=5cm, PC=7cm,则点P到直线/的距离是_________ cm.12.(3分)(2019・广州)代数式丿=有意义时,x应满足的条件是________ .13.(3 分)(2019・广州)分解因式:x2y+2xy+y= ____ .14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°B 重合),ZDAM=45°,点F 在射线AM 上,且CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @/\AEG 的周长为(1+V2) a ;③BEZ+DG^EG 2;(4)A£AF 的面2 「 积的最大值丄#.8其中正确的结论是 _______ •(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17. (9分)(2019・广州)解方程组:JxVFl .Ix+3y=918. (9 分)(2019・广州)如图,D 是 AB 上一点,DF 交 AC 于点 E, DE=FE, FC//AB, 求证:/\ADE 竺 CFE.点E 在边AB ±运动(不与点A,角形,则该圆锥侧面展开扇形的弧长为 _______ .(结果保留“)正方形ABCD 的边长为a,A(1)化简P;(2)若点(a, b)在一次函数的图象上,求P的值.20.(10分)(2019・广州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组OWrvi2B组1£V2mC组2Wt<310D组3WfV412E组4WrV57F组总54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图AS21.(12分)(2019・广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座. (1) 计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.22. (12分)(2019・广州)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与 BD 交于点P ( - 1, 2), AB Lx 轴于点E,正比例函数的图象与反比例函数丁=卫二1x的图象相交于A, P 两点. (1) 求m, n 的值与点A 的坐标; (2) 求证:△CPDsMEO ; (3)求 sinZCDB 的值.23. (12分)(2019・广州)如图,G )O 的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC (点D 不与B 重合),连接AD ;(保留作图痕迹, 不写作法)24. (14分)(2019・广州)如图,等边△ABC 中,AB=6,点D 在BC 上,BD=4,点、E 为 边AC 上一动点(不与点C 重合),关于DE 的轴对称图形为 (1) 当点F 在AC 上时,求证:DF//AB ;(2)设的面积为Si, AABF 的面积为S2,记S=Si-S2, S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;求四边形ABCD 的周长.(3)当B, F, E三点共线时.求AE的长.25.(14分)(2019*广州)已知抛物线G:y-rm? -2mx-3有最低点.(1)求二次函数y—mx2 - 2mx - 3的最小值(用含,"的式子表示);(2)将抛物线G向右平移加个单位得到抛物线G1.经过探究发现,随着加的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019•广州)|-6|=( 【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-6的绝对值是| - 6|=6. 故选:B.2. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) A. 5B. 5.2C. 6D. 6.4【考点】众数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A. 3. (3分)(2019•广州)如图,有一斜坡坡顶B 离地面的高度为30加,斜坡的倾 斜角是ZBAC,若tanZB4C=Z,则此斜坡的水平距离AC 为()【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解 决.A. - 6B. 50mC. 30mD. 12mA. 75m【解答】解:•.•ZBC4=90° , tanZBAC=兰,BC=30m,55 "AC "AC解得,AC=75,故选:A.4.(3分)(2019-r州)下列运算正确的是()A.- 3 - 2= - 1B. 3X(-丄)2=-丄3 3C. ^•^—x15D. Va*Vab=a,Vb【考点】实数的运算;同底数幕的乘法.【分析】直接利用有理数混合运算法则、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A、-3-2= -5,故此选项错误;B、3X (-丄)2=_,故此选项错误;3 3C、x i,x5—x s,故此选项错误;D、\/~a* V ab=fl Vb> 正确.故选:D.5.(3分)(2019・广州)平面内,OO的半径为1,点P到O的距离为2,过点P可作OO 的切线条数为()A. 0条B. 1条C. 2条D.无数条【考点】切线的性质.【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:•••O0的半径为1,点P到圆心0的距离为2,d>Y,.•.点P与OO的位置关系是:P在OO外,•.•过圆外一点可以作圆的2条切线,故选:C.6.(3分)(2019・广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 120 = 150B. 120 = 150C. 120 = 150D. 120=150x~8 x x x+8【考点】由实际问题抽象出分式方程.【分析】设甲每小时做乂个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:120丿50,x x+8故选:D.7.(3分)(2019・广州)如图,口ABCD中,AB=2, AD=4,对角线AC, BD相交于点O,且E, F, G, H分别是AO, BO, CO, DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC1BDD.△ABO的面积是△EFO的面积的2倍【考点】三角形的面积;平行四边形的判定与性质.【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:•:E, F, G, H分别是AO, BO, CO, DO的中点,在°ABCD中,AB=2,AD=4,:.EH=1-AD^2,:.EH^HG,故选项A错误;•:E, F, G, H分别是AO, BO, CO, DO 的中点,•'•EH专AD 今BC=FG,•••四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;•••点E、F分别为OA和OB的中点,:.EF=L^, EF//AB,:,Z\OEF<^/\OAB,...S AAEF _ .-EF)2 4,^AOAB 壮4即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.& (3分)(2019・广州)若点A ( - 1, yi), B(2,以),C (3, %)在反比例函数的X 图象上,则yi, y2, y3的大小关系是()A. y3<y2<yiB. y2<yi<y3C. yi<y3<y2D. yi<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征求出八%、为的值,比较后即可得出结论.【解答】解:•••点A ( - 1, yi), B(2, 丁2), C(3, y3)在反比例函数y=^-的图象上,X .-.ji=-^-= - 6, y2=—=3, j3=—=2,-1 2 3又T - 6<2<3,.'.yi<y3<y2.故选:C.9.(3分)(2019・广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()A. 4^5B. 4A/3C. 10D. 8【考点】全等三角形的判定与性质;线段垂直平分线的性质;矩形的性质.【分析】连接AE,由线段垂直平分线的性质得出OA^OC, AE=CE,证明COE得出AF=CE=5,得出AE=CE=5, BC=BE+CE=8,由勾股定理求出AB =V A E2-BE2=4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:TEF是AC的垂直平分线,・・・OA=OC, AE=CE,・・•四边形ABCD是矩形,:.ZB=90° , AD//BC,:.ZOAF=ZOCE f'ZAOF=ZCOE在ZvlOF和ACOE 中,OA=OCZOAF^ZOCE•••△AOF竺△COE (ASA),:.AF=CE=5f:.AE=CE=5f BC=BE+CE=3+5 = 8,/MB=V A E2-BE2=V52-32=4,A c=V A B2+BC2= V42 + 82=4^:10.(3分)(2019・广州)关于x的一元二次方程(^ - 1) x-k+2^0有两个实数根xi,Xi,若(xi - X2+2) (xi -池-2) +2x1x2= - 3,贝!]丘的值( )A. 0或2B. -2 或2C. - 2D. 2【考点】根的判别式;根与系数的关系.【分析】由根与系数的关系可得出X\+X2 — k - 1, X\X2— - k+2,结合(X1-X2+2)(XI - X2 -2) +2X1X2= - 3可求出k的值,根据方程的系数结合根的判别式△三0可得出关于k 的一元二次不等式,解之即可得出)1的取值范围,进而可确定丘的值,此题得解.【解答】解:•••关于x的一元二次方程(^- 1) x-k+2=0的两个实数根为血,池,・*.X1+X2 —- 1, X1X2= ~ k+2....(XI - X2+2) (XI - X2 - 2) +2X1X2= - 3,即(X1+X2)2 - 2X1X2 - 4= - 3,(k- 1) 2+2斤-4-4= - 3,解得:k=±2.•••关于x的一元二次方程Ck- 1) x _ k+2=0有实数根,- (E-1) F-4X1X (-好2)三0,解得:k^2y/2 - 1 或kW - 2A/2 - 1 >.'.k=2.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C在直线/上,PBM, PA^Gcm, PB=5cm, PC【考点】点到直线的距离.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:TPB丄/, PB=5cm,■-.P到I的距离是垂线段PB的长度5cm,故答案为:5.12.(3分)(2019・广州)代数式卓=有意义时,x应满足的条件是x>8x-8【考点】62:分式有意义的条件;72:二次根式有意义的条件.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x-8x - 8>0,解得:x>8.故答案为:x>&13.(3 分)(2019・广州)分解因式:A+2xy+y= y (x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y C+2x+l)=y(x+1)故答案为:y(x+1)2.14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°<a<90°),使得三角板ADE的一边所在的直线与BC垂直,则a的度数为15°或【考点】角的计算.【分析】分情况讨论:®DE±BC ; @ADLBC. 【解答】解:分情况讨论:① 当 DELBC 时,ZBAD= 180° - 60° - 45° =75° , .*.a=90° - ZBAD= 15° ; ② 当 AD1BC 时,a=90° - ZC=90° - 30° =60° . 故答案为:15°或60°15. (3分)(2019-r 州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三 角形,则该圆锥侧面展开扇形的弧长为—2近 兀(结果保留“)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题. 【解答】解:•••某圆锥的主视图是一个腰长为2的等腰直角三角形, •••斜边长为2迈, 则底面圆的周长为2屈T,•••该圆锥侧面展开扇形的弧长为2妨, 故答案为2屈T.16. (3分)(2019・广州)如图,正方形ABCD 的边长为a,点E 在边AB 上运动(不与点A, B 重合),ZDAM=45°,点F 在射线AM 上,且AF=^E, CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @AAEG 的周长为(1+返)a ;(3)BE 2+DG 2^EG 2;④△E4F 的面 积的最大值L A8其中正确的结论是①④.(填写所有正确结论的序号)弧长的计算;圆锥的计算;简单几何体的三视图;由三视图判断几何体.【考点】二次根式的应用;勾股定理;相似三角形的判定与性质.【分析】①正确•如图1中,在BC上截取BH=BE,连接EH.证明△ FAE竺厶EHC(SAS), 即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则厶CBE丝HCDH (SAS),再证明厶GCE竺厶GCH (SAS),即可解决问题.④正确.设BE=x,则AE=a-x, AF=^,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.•:BE=BH, ZEBH=90° ,:.EH=y[2PE, ':AF=^2^E,:.AF=EH,':ZDAM=ZEHB=45° , ZBAD=90° ,:.ZFAE=ZEHC= 135° ,\'BA=BC, BE=BH,:.AE^HC,.•.△FAE竺AEHC (SAS),:.EF=EC, ZAEF^ZECH,V ZECH+ZCEB=9Q° ,A ZAEF+ZCEB^90° ,A ZF£C=90° ,:.ZECF=ZEFC=45° ,故①正确,如图2中,延长AD到H,使得DH=BE,则厶CBE竺“CDH (SAS),・•・ ZECB = ZDCH,:.ZECH=ZBCD=90° ,:.ZECG=ZGCH=45° ,•・・CG=CG, CE=CH,:.AGCE^AGCH (SAS),・・・EG=GH,•:GH=DG+DH, DH=BE,・・・EG=BE+DG,故③错误,AAEG 的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD = 2a,故②错误,设BE=x,贝lj AE=a - x, AF=\[^c,・*.S/\AEF=—(a - x) Xx= -- —(x2 - ax+^-a1 - Az?)=-丄(兀-^)2+^2,2 2 2 2 4 4 2 2 8护时,△仙的面积的最大值为护故④正确,故答案为①④.\G三、解答题(共9小题,满分102分)17.(9分)(2019・广州)解方程组:(xVFl .Ix+3y=9【考点】解二元一次方程组.【分析】运用加减消元解答即可.【解答】解:$于I:,]x+3y=9②②-①得,4y=2,解得y=2,把y=2代入①得,x - 2=1,解得兀=3, 故原方程组的解为]x=3.1尸218.(9 分)(2019・广州)如图,D 是 AB 1.一点,DF 交AC 于点E, DE=FE, FC//AB,【考点】全等三角形的判定.【分析】利用AAS证明:△ ADE竺CFE.【解答】证明:TFC/AB,:.ZA=ZFCE, ZADE= ZF,在△ADE与△ CFE中:'ZA=ZFCF•二ZADE=ZF>卫E=EF.•.△ADE竺ACFE (AAS).19.(10 分)(2019・广州)已知―至一--1(a^±b)a2-b2 a+b(1)化简P;(2)若点(a, b)在一次函数y=x-迈的图象上,求P的值.【考点】一次函数图象上点的坐标特征.【分析】(1)P=- 2a -丄= ____________ 2a ________ = 2a-a+b_=丄;2_^2 a+b (a+b)(a~b) a+b (a+b)(a~b) a~ba(2)将点(a, b)代入y=x-迈得到Q-Z?=伍,再将伍代入化简后的F,即可求解;【解答】解:(1) P= 2a -丄= _______________ 2a_ _=丄;a'-b? a+b (a+b) (a-b) a+b (a+b) (a-b) a~b(2) .点(a, b)在一次函数y—x - \[2的图象上,•• b=ci - ^2?.'.a - b—^f2,•p=.V20.(10分)(2019-r州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:(1)求频数分布表中Ml的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图【考点】频数(率)分布表;扇形统计图;列表法与树状图法.【分析】(1)用抽取的40人减去其他5个组的人数即可得出加的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)加=40-2-10- 12-7-4=5;(2)B组的圆心角=360° X旦=45° ,40C组的圆心角= 360°或丄。
2011年广东省湛江市中考数学试卷-解析版一、选择题(本大题共12小题,每小题3分,共36分)1、﹣5的相反数是()A、﹣5B、5C、﹣D、考点:相反数。
分析:根据相反数的概念解答即可.解答:解:﹣5的相反数是5.故选B.点评:本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.2、四边形的内角和为()A、180°B、360°C、540°D、720°考点:多边形内角与外角。
分析:根据多边形的内角和公式即可得出结果.解答:解:四边形的内角和=(4﹣2)•180°=360°.故选B.点评:本题主要考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3、(2011•湛江)数据1,2,4,4,3的众数是()A、1B、2C、3D、4考点:众数。
专题:应用题。
分析:根据众数的定义,从数据中找出出现次数最多的数解答即可.解答:解:1,2,4,4,3中,出现次数最多的数是4,故出现次数最多的数是4.故选D.点评:此题考查了众数的定义,一组数据中出现次数最多的数叫做众数.4、(2011•湛江)下面四个几何体中,主视图是四边形的几何体共有()A、1个B、2个C、3个D、4个考点:简单几何体的三视图。
分析:仔细观察图象,根据主视图的概念逐个分析即可得出答案.解答:解:仔细观察图象可知:圆锥的主视图为三角形,圆柱的主视图也为四边形,球的主视图为圆,只有正方体的主视图为四边形;故选B.点评:本题主要考查三视图的主视图的知识;考查了学生地空间想象能力,属于基础题.5、(2011•湛江)第六次人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科学记数法表示为()A、69.9×105B、0.699×107C、6.99×106D、6.99×107考点:科学记数法—表示较大的数。
人教版数学八年级上册全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.如图,1BA和1CA分别是ABC∆的内角平分线和外角平分线,2BA是1A BD∠的角平分线,2CA是1A CD∠的角平分线,3BA是2A BD∠的角平分线,3CA是2A CD∠的角平分线,若1Aα∠=,则2018A∠=_____________【答案】20172α【解析】【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.4.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.5.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.【答案】600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.二、八年级数学三角形选择题(难)7.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理8.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B 铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 四个数10−,1−,0,10中,最小的数是( )A. 10−B. 1−C. 0D. 10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010−<−<< , ∴最小的数是10−,故选:A .2. 下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3. 若0a ≠,则下列运算正确的是( ) A. 235a a a += B. 325a a a ⋅= C. 235a a a ⋅= D. 321a a ÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A B 选项;根据分式乘法法则计算,可判断C 选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A 、32523666a a a a a +=+=,原计算错误,不符合题意; B 、325a a a ⋅=,原计算正确,符合题意;C 、2236a a a ⋅=,原计算错误,不符合题意; D 、32a a a ÷=,原计算错误,不符合题意;故选:B .4. 若a b <,则( )A. 33a b +>+B. 22a b −>−C. a b −<−D. 22a b <【答案】D【解析】 【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b −<−,则此项错误,不符题意;C .∵a b <,∴a b −>−,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5. 为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a 的值为20B. 用地面积在812x <≤这一组的公园个数最多C. 用地面积在48x <≤这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a −−−−,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6. 某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A. 1.2110035060x +=B. 1.2110035060x −=C. 1.2(1100)35060x +=D. 110035060 1.2x −× 【答案】A【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7. 如图,在ABC 中,90A ∠=°,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A. 18B.C. 9D. 【答案】C【解析】 【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=°,6ABAC ==,点D 是BC 中点,AE CF = ∴45,BAD B C AD BD DC ∠=∠=∠=°== ∴ADE CDF ≌, ∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△ 又∵166182ABC S =××= ∴1=92ABC AEDF S S =四边形 故选:C8. 函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A. 1x <−B. 10x −<<C. 02x <<D. 1x >【答案】D【解析】 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 增大而减小,故选:D .9. 如图,O 中,弦AB长为C 在O 上,OC AB ⊥,30ABC ∠=°.O所在的平面内有的的一点P ,若5OP =,则点P 与O 的位置关系是( )A. 点P 在O 上B. 点P 在O 内C. 点P 在O 外D. 无法确定【答案】C【解析】 【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =由圆周角定理可得60AOC ∠=°,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12AD AB ∴==, 30ABC =°∠260AOC ABC ∴∠=∠=°,在ADO △中,90ADO ∠=°,60AOD ∠=°,AD =sin AD AOD OA∠= ,4sin 60AD OA ∴==°,即O 的半径为4, 54OP => ,∴点P 在O 外,故选:C .10. 如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l 是5,则该圆锥的体积是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72°的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ×=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=, 1r ∴=,∴∴圆锥的体积为2113π××, 故选:D .第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 如图,直线l 分别与直线a ,b 相交,a b ,若171∠=°,则2∠的度数为______.【答案】109°【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=°,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=°,∴1371∠=∠=°,∴21803109∠=°−∠=°;故答案为:109°12. 如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =×+×+×=++×=,故答案为:220. 13. 如图,ABCD 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14. 若2250a a −−=,则2241a a −+=______. 【答案】11【解析】【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a −−=,得225a a −=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a −−= ,225a a ∴−=,()2224122125111a a a a ∴−+=−+=×+=,故答案为:11.15. 定义新运算:()()200a b a a b a b a −≤ ⊗= −+> 例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为______. 【答案】12−或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a −≤ ⊗= −+> , 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−; ②当0x >时,314x −+=−, 解得,74x = 综上所述,x 的值是12−或74, 故答案为:12−或74. 16. 如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ′′(点A 平移后的对应点为A ′),A B ′′交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA ′的面积;③A E ′;④B BD BB O ′′∠=∠.其中正确的结论有______.(填写所有正确结论的序号)【答案】①②④【解析】【分析】由()1,2B ,可得122k =×=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA ′的面积;故②符合题意;如图,连接A E ′,证明四边形A DEO ′为矩形,可得当OD 最小,则A E ′最小,设()2,0D x x x>,可得A E ′的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n ′+,证明B BD A OB ′′′ ∽,可得B BD B OA ′′′∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形;∴()1,2B ,∴122k =×=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOB A OD S S ′==×= , ∴BOK AKDA S S ′= 四边形,∴BOK BKDBKD AKDA S S S S ′+=+ 四边形, ∴OBD 的面积等于四边形ABDA ′的面积;故②符合题意;如图,连接A E ′,∵DE y ⊥轴,90DA O EOA ′′∠=∠=°,∴四边形A DEO ′为矩形,∴A E OD ′=,∴当OD 最小,则A E ′最小, 设()2,0D x x x > , ∴2224224OD x x x x+≥⋅⋅, ∴2OD ≥, ∴A E ′的最小值为2,故③不符合题意;如图,设平移距离为n ,∴()1,2B n ′+, ∵反比例函数为2y x=,四边形A B CO ′′为矩形, ∴90BB D OA B ′′′∠=∠=°,21,1D n n+ + , ∴BB n ′=,1OA n ′=+,22211n B D n n ′=−=++,2A B ′′=, ∴2112nBB n B D n OA n A B ′′+===′′′+,∴B BD A OB ′′′ ∽,∴B BD B OA ′′′∠=∠,∵B C A O ′′∥,∴CB O A OB ′′′∠=∠,∴B BD BB O ′′∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.) 17. 解方程:1325x x=−. 【答案】3x =【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案. 【详解】解:1325x x=−, 去分母得:()325x x =−, 去括号得:615x x =−, 移项得:615x x −=−, 合并同类项得:515x −=−,解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18. 如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:的ABE ECF △△∽.【答案】见解析【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=°,9AB CB ==,进而得出AB BE EC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明.【详解】解:3BE = ,6EC =,9BC ∴=,四边形ABCD 是正方形,9AB CB ∴==,90B C ∠=∠=°, 9362AB EC == ,32BE CF =, AB BE EC CF∴= 又90B C ∠=∠=° ,ABE ECF ∴∽ .19. 如图,Rt ABC △中,90B ∠=︒.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180°得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=°,∴四边形ABCD 为矩形.20. 关于x 的方程2240x x m −+−=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+. 【答案】(1)3m >(2)2−【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键; (1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.【小问1详解】解:∵关于x 的方程2240x x m −+−=有两个不等的实数根.∴()()224140m ∆=−−××−>,解得:3m >;【小问2详解】解:∵3m>,∴2113|3|21m m mm m−−−÷⋅−+()()1123311 m m mm m m−+−−⋅⋅−−+ 2=−;21. 善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75 78 82 82 84 86 87 88 93 95B组75 77 80 83 85 86 88 88 92 96(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分的同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】解:由题意可知,A 、B 两组得分超过90分的同学各有2名,令A 组的2名同学为1A 、2A ,B 组的2名同学为1B 、2B ,画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=. 22. 2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87°,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60°≈,cos36.870.80°≈,tan 36.870.75°≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键. (1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E ,由题意可知,36.87DBE ∠=°,36.87BDC ∴∠=°,在BCD △中,90C ∠=°,10BD =米,cos CD BDC BD∠= , cos36.87100.808CD BD ∴=⋅°≈×≈米,即CD 的长约为8米;【小问2详解】解:17AD = 米,8CD =米,15AC ∴=米,在BCD △中,90C ∠=°,10BD 米,sin BC BDC BD∠= , sin 36.87100.606BC BD ∴=⋅°≈×≈米,1569AB AC BC ∴=−=−=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23. 一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表: 脚长(cm)x … 23 24 25 26 27 28 …身高(cm)y … 156 163 170 177 184 191 …(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围); (3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析 (2)75y x =− (3)175.6cm【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键. (1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =−代入即可求解; 【小问1详解】解:如图所示:【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系, 将点()()23,156,24,163代入得:1562316324a b a b =+ =+ , 解得:75a b = =−∴75y x =− 【小问3详解】解:将25.8cm 代入75y x =−得: 725.85175.6cm y =×−=∴估计这个人身高175.6cm24. 如图,在菱形ABCD 中,120C ∠=°.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=°时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r . ①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD ⊥(2)①3r ≥+;②能,12BE =【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=°,AB AD =,再结合轴对称的性质可得结论; (2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=°,O 在BD 上,30AEO EAO ∠=∠=°,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD∠=°−°=°,可得60OFC ∠=°,OCF △为等边三角形,证明1203090BAF ∠=°−°=°,可得:45BAE FAE ∠=∠=°,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.小问1详解】解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=°,∴120BAD C ∠=∠=°,AB AD =,∵30BAF ∠=°,∴1203090FAD ∠=°−°=°,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;【小问2详解】解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=°,∴AC BD ⊥, 60BCA ∠=°,BA BC =, ∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=°=∠,【∴,,,A E F C 共圆,2120AOE AFE ∠=∠=°,O 在BD 上,∵AO OE =,∴30AEO EAO ∠=∠=°,过O 作OJ AE ⊥于J ,∴AJ EJ =,AO AJ =,∴AO AE =, 当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=°,∴(sin 6069AE AB =⋅°=+,∴)93AO =+;∴r 的取值范围为3r ≥+;②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆,∵AB AC AF AD ===,∴,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,同理可得ACD 为等边三角形,∴60CAD ∠=°,∴30CLD ∠=°,∴18030150CFD ∠=°−°=°,∵DF 为O 的切线,∴90OFD ∠=°, ∴60OFC ∠=°,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=°, ∴1302CAF COF ∠=∠=°, ∴603030DAF °−°=°∠=,∴1203090BAF ∠=°−°=°,由对折可得:45BAE FAE ∠=∠=°,BE EF =,过E 作EM AF ⊥于M ,∴设AM EM x ==,∵60EFM ∠=°,∴FM EM x =,∴6x x +=+解得:x =∴6FM =, ∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键. 25. 已知抛物线232:621(0)G y ax ax a a a −−++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n=+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+. (1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3°速度顺时针旋转t 秒后(045)t ≤<得到直线l ′,当l AB ′∥时,直线l ′交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =;(2)1m =±(3)①15t =,②k的最大值为,抛物线G 为262y x x =−+;【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=× −=−+,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB ′∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=°,可得345t =,从而可得答案;②计算()1122AEF A E S EF y y EF =⋅−= ,当1y =时, 可得的22620x x a a −−+=,则126x x +=,2122x x a a =−+,可得12EF x x =−==,可得当1a =时,EF 的最小值为 【小问1详解】解:∵抛物线232:621(0)G y ax ax a a a −−++>,∴抛物线对称轴为直线:632a x a−=−=; 【小问2详解】 解:∵直线2:l y m x n =+过点(3,1)C ,∴231m n +=,如图,∵直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+, ∴A 在B 的左边,2AD AC CD CD BC BD ++=+++,∵C 在抛物线的对称轴上,∴CA CB =,∴2AD BD =+,设(),2D p ,∴1212232x x p x x p +=× −=−+, 解得:4p =,∴()4,2D ,∴223142m n m n += +=, ∴21m =,解得:1m =±;【小问3详解】解:①如图,当l AB ′∥时,与抛物线交于,E F ,∵直线y x n =+,∴45DCF ∠=°,∴345t =,解得:15t =,②∵()12AEF A E S EF y y =⋅−= ,当1y =时,2326211ax ax a a −−++=,∴22620x x a a −−+=,∴126x x +=,2122x x a a =−+,∴12EF x x =−====,∵40>,∴当1a =时,EF 的最小值为∴此时12AEF S =× ∵对于任意的0a >,均有S k ≥成立,∴k 的最大值为∴抛物线G 为262y x x =−+;【点睛】本题考查的是二次函数的图象与性质,一次函数的性质,坐标与图形面积,一元二次方程根与系数的关系,理解题意,利用数形结合的方法解题是关键.。
广东省2011年中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)1、(2011•广东)﹣2的倒数是()A、﹣B、C、2D、﹣2考点:倒数。
分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣)=1,∴﹣2的倒数是﹣点评:本题主要考查了倒数的定义,比较简单2、(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A、5.464×107吨B、5.464×108吨C、5.464×109吨D、5.464×1010吨考点:科学记数法—表示较大的数。
专题:常规题型。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A、B、C、D、考点:相似图形。
专题:应用题。
分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A、B、C、D、考点:概率公式。
2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于()A. 2B.12- C. 12D. ﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2. 计算22的结果是()A. 1B.C. 2D. 4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:22224=⨯=故选:D .【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3. 下列图形中具有稳定性的是( )A. 平行四边形B. 三角形C. 长方形D. 正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论. 详解】解:三角形具有稳定性;故选:B .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=40°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】 【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】 //a b ,140∠=︒,∴240∠=︒.故选B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A. 14B. 12 C. 1 D. 2【答案】D【解析】【【分析】利用中位线的性质即可求解.【详解】∵D 、E 分比为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴12DE BC =, ∵BC =4,∴DE =2,故选:D .【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键. 6. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1- 【答案】A【解析】【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键. 7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( ) A. 14 B. 13 C. 12 D. 23【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13, 故选: B .【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键. 8. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC故选C .【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质. 9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A. 1yB. 2yC. 3yD. 4y 【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>, ∴在每个象限内,y 随x 的增大而减小, ∵点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x =图象上, ∴1234y y y y >>>,故选D .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键. 10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选C .【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____. 【答案】12【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=12.12. 单项式3xy 的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 13. 菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:5420⨯=,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14. 若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案:1. 的为【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.【答案】π【解析】【分析】根据扇形面积公式可直接进行求解. 【详解】解:由题意得:该扇形的面积为2902360ππ⨯⨯=; 故答案为π.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩. 【答案】12x <<【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:32113x x ->⎧⎨+<⎩①②解①得:1x >,解②得:2x <,∴不等式组的解集是12x <<.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17. 先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为的D ,E .求证:OPD OPE ≌V V .【答案】见解析【解析】【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌V V .【详解】证明:∵AOC BOC ∠=∠,∴OC 为AOB ∠的角平分线,又∵点P 在OC 上,PD OA ⊥,PE OB ⊥,∴PD PE =,90PDO PEO ∠=∠=︒,又∵PO PO =(公共边),∴()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∴该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20. 物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5y 15 19 25(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.【答案】(1)215y x =+(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x =2,y =19进行求解函数解析式;(2)由(1)可把y =20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x =2,y =19代入解析式得: 21519k +=,解得:2k =,∴y 与x 的函数关系式为215y x =+;【小问2详解】解:把y =20代入(1)中函数解析式得:21520x +=,解得: 2.5x =,即所挂物体的质量为2.5kg .【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式. 21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元; 平均数为:3144537182103181715⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元; 小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =,1AD =,求CD 的长度.【答案】(1)△ABC 是等腰直角三角形;证明见解析;(2【解析】【分析】(1)根据圆周角定理可得∠ABC =90°,由∠ADB =∠CDB 根据等弧对等角可得∠ACB =∠CAB ,即可证明;(2)Rt △ABC 中由勾股定理可得AC ,Rt △ADC 中由勾股定理求得CD 即可;【【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°,∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB ,∴∠ACB =∠CAB ,∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形,∴BC =AB ,∴AC 2=,Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD ; 【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.【答案】(1)223y x x =+-(2)2;P (-1,0)【解析】【分析】(1)用待定系数法将A ,B 的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C 点坐标,直线AC ,BC 的解析式,PQ 的解析式为:y =-2x +n ,进而求出P ,Q 的坐标以及n 的取值范围,由CPQ CPA APQ S S S =-△△△列出函数式求解即可.【小问1详解】解:∵点A (1,0),AB =4,∴点B 的坐标为(-3,0),将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩, 解得:b =2,c =-3,∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-,顶点式为:2y (x 1)4=+-,则C 点坐标为:(-1,-4),由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6,由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2,∵PQ ∥BC ,设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭, 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭, ∵P 在线段AB 上, ∴312n -<<, ∴n 的取值范围为-6<n <2,则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键。
2011年广东省中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)1、﹣2的倒数是()A、﹣B、C、2D、﹣2考点:倒数。
分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣)=1,∴﹣2的倒数是﹣点评:本题主要考查了倒数的定义,比较简单2、(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A、5.464×107吨B、5.464×108吨C、5.464×109吨D、5.464×1010吨考点:科学记数法—表示较大的数。
专题:常规题型。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A、B、C、D、考点:相似图形。
专题:应用题。
分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A、B、C、D、考点:概率公式。
专题:应用题。
分析:先求出球的所有个数与红球的个数,再根据概率公式解答即可.解答:解:∵共8球在袋中,其中5个红球,∴其概率为,故选C.点评:本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.5、(2011•广东)正八边形的每个内角为()A、120°B、135°C、140°D、144°考点:多边形内角与外角。
分析:根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.解答:解:根据正八边形的内角公式得出:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°.故选B.点评:此题主要考查了正多边形的内角公式运用,正确的记忆正多边形的内角求法公式是解决问题的关键.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6、(2011•广东)已知反比例函数解析式的图象经过(1,﹣2),则k=﹣2.考点:待定系数法求反比例函数解析式。
专题:计算题。
分析:将(1﹣2)代入式即可得出k的值.解答:解:∵反比例函数解析式的图象经过(1,﹣2),∴k=xy=﹣2,故答案为﹣2.点评:此题比较简单,考查了用待定系数法求反比例函数的解析式,是中学阶段的重点.7、(2011•广东)使在实数范围内有意义的x的取值范围是x≥2.考点:二次根式有意义的条件。
专题:探究型。
分析:先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:∵使在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.8、(2011•广东)按下面程序计算:输入x=3,则输出的答案是12.考点:代数式求值。
专题:图表型。
分析:根据输入程序,列出代数式,再代入x的值输入计算即可.解答:解:根据题意得:(x3﹣x)÷2∵x=3,∴原式=(27﹣3)÷2=24÷2=12.故答案为:12.点评:本题考查了代数式求值,解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.9、(2011•广东)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=25°.考点:切线的性质;圆周角定理。
专题:计算题。
分析:连接OB,AB与⊙O相切于点B,得到∠OBA=90°,根据三角形内角和得到∠AOB的度数,然后用三角形外角的性质求出∠C的度数.解答:解:如图:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∵OB=OC,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC=2∠C,∴∠C=25°.故答案是:25°.点评:本题考查的是切线的性质,根据求出的性质得到∠OBA的度数,然后在三角形中求出∠C的度数.10、(2011•广东)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为.考点:相似多边形的性质;三角形中位线定理。
专题:规律型。
分析:先分别求出第一个正六角星形AFBDCE与第二个边长之比,再根据相似多边形面积的比等于相似比的平方,找出规律即可解答.解答:解:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1,且相似比为2:1,∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为,同理可得,第三个六角形的面积为:=,第四个六角形的面积为:=,故答案为:.点评:本题考查的是相似多边形的性质及三角形中位线定理,解答此题的关键是熟知相似多边形面积的比等于相似比的平方.三、解答题(一)(本大题5小题,每小题6分,共30分)11、(2011•广东)计算:.考点:特殊角的三角函数值;零指数幂。
分析:本题涉及零指数幂、特殊角的三角函数值、二次根式的化简,乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+3×﹣4,=1+3﹣4,=0.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式的化简等考点的运算.12、(2011•广东)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集。
专题:数形结合。
分析:分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≥3,故原不等式组的解集为:x≥3,在数轴上表示为:点评:本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.13、(2011•广东)已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.考点:全等三角形的判定与性质。
专题:证明题。
分析:根据两直线平行内错角相等即可得出∠A=∠C,再根据全等三角形的判定即可判断出△ADF≌△CBE,得出AF=CE,进而得出AE=CF.解答:证明:∵AD∥CB,∴∠A=∠C,∵AD=CB,∠D=∠B,∴△ADF≌△CBE,∴AF=CE,∴AE=CF.点评:本题考查了平行线的性质以及全等三角形的判定及性质,难度适中.14、(2011•广东)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)考点:圆与圆的位置关系;坐标与图形性质;扇形面积的计算。
分析:(1)根据题意作图即可求得答案,注意圆的半径为2;(2)首先根据题意求得扇形BP1A与△BP1A的面积,再作差即可求得劣弧与弦AB围成的图形的面积.解答:解:(1)如图:∴⊙P与⊙P1的位置关系是外切;(2)如图:∠BP1A=90°,P1A=P1B=2,∴S扇形BP1A==π,S△AP1B=×2×2=2,∴劣弧与弦AB围成的图形的面积为:π﹣2.点评:此题考查了圆与圆的位置关系以及扇形面积的求解方法.题目难度不大,解题的关键是注意数形结合思想的应用.15、(2011•广东)已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.考点:抛物线与x轴的交点;一次函数的性质。
专题:代数综合题。
分析:(1)根据题意的判别式小于0,从而得出c的取值范围即可;(2)根据c的值,判断直线所经过的象限即可.解答:解:(1)∵抛物线与x轴没有交点.∴△=1﹣4×c=1﹣2c<0,解得c>;(2)∵c=,∴直线的解析式为y=x+1,∵c=>0,b=1>0,∴直线y=x+1经过第一、二、三象限.点评:本题考查了抛物线和x轴的交点问题以及一次函数函数的性质,是基础知识要熟练掌握.四、解答题(二)(本大题4小题,每小题7分,共28分)16、(2011•广东)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?考点:分式方程的应用。
专题:应用题。
分析:根据等量关系:整箱购买,则买一送三瓶,相当于每瓶比原价便宜了0.6元,依此列出方程求解即可.解答:解:设该品牌饮料一箱有x瓶,依题意,得,化简,得x2+3x﹣130=0,解得x1=﹣13(不合,舍去),x2=10,经检验:x=10符合题意,答:该品牌饮料一箱有10瓶.点评:本题考查了分式方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系.注意“买一送三”的含义.17、(2011•广东)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)考点:解直角三角形的应用。