第一章 系统科学与系统的一般理论
- 格式:ppt
- 大小:199.50 KB
- 文档页数:41
《系统工程原理》课程标准(执笔人:颜兆林罗鹏程审阅学院:信息系统与管理学院)课程编号:0811208英文名称:Principle of Systems Engineering预修课程:高等数学、线性代数、概率论与数理统计、运筹学基础学时安排:54学时,其中讲授43学时,实践8学时,考核3学时学分:3一、课程概述(一)课程性质地位本课程为技术类系统工程、指挥信息系统工程、管理工程专业本科学员的学科基础必修课程,合训类系统工程专业本科学员的专业综合必修课程。
通过本课程的教学,使学员理解系统工程方法论,学会用系统的观点分析问题,并且掌握系统工程分析解决问题的基本概念、基本原理和基本方法,初步具有运用系统建模、系统分析、系统预测、系统评价、系统决策与系统网络计划等系统工程方法分析解决实际问题的能力,为达成相关专业人才培养的目标奠定基础。
(二)课程基本理念以素质教育和创新教育为指导思想,贯彻知识、能力、素质相结合以及发展性、教与学良性互动的原则,注重理论讲解与方法应用的结合,使学员掌握系统工程的基本概念、原理和方法,并初步具有运用系统工程有关方法来解决实际问题的能力。
(三)课程设计思路在相关专业教育改革的基本理念的指导下,结合我校本科生培养目标和专业需求,进行本课程教学的总体框架设计;以系统工程方法论、系统建模与系统分析、系统预测、系统评价、系统决策和网络计划技术为主要章节,合理划分课程教学的重点掌握内容和一般了解内容,教学过程中适当引入国内外系统工程方向的新进展和新成果,保证课程的先进性和创新性;采用课堂讲解的方式实施教学,通过闭卷考试的方式考核学员对内容的掌握情况并评价教学效果。
二、课程目标(一)知识与技能使学员能够描述和解释系统工程的基本原理和方法,能够阐述系统工程基本概念,并能够对系统工程的基本理论、模型和方法加以灵活运用,举一反三。
(二)过程与方法使学员理解运用系统工程的原理和方法解决工程实际问题的本质,掌握系统工程的有关模型和方法。
系统论(SystemTheory)系统论是研究系统的一般模式,结构和规律的学问,它研究各种系统的共同特征,用数学方法定量地描述其功能,寻求并确立适用于一切系统的原理、原则和数学模型,是具有逻辑和数学性质的一门新兴的科学。
系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。
他在1952年发表“抗体系统论”,提出了系统论的思想。
1973年提出了一般系统论原理,奠定了这门科学的理论基础。
但是他的论文《关于一般系统论》,到1945年才分开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。
确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论基础、发展和应用》(《GeneralSystemTheory;Foundations,Development,Applications》),该书被公认为是这门学科的代表作。
系统一词,来源于古希腊语,是由部分构成整体的意思。
今天人们从各种角度上研究系统,对系统下的定义不下几十种。
如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。
一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。
在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。
系统论认为,整体性、关联性,等级结构性、动态平衡性、时序性等是所有系统的共同的基本特征。
这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。
,贝塔朗菲对此曾作过说明,英语SystemApproach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。
系统理论随着世界复杂性的发现。
在科学研究中兴起了建立复杂性科学的热潮。
贝塔朗菲指出,现代技术和社会已变得十分复杂,传统的方法不再适用,“我们被迫在一切知识领域中运用整体或系统概念来处理复杂性问题”。
普利高津断言,现代科学在一切方面,一切层次上都遇到复杂性,必须“结束现实世界简单性”这一传统信念,要把复杂性当作复杂性来处理,建立复杂性科学。
正是在这种背景下,出现了一系列以探索复杂性为己任的学科,我们可统称为系统科学。
系统科学的发展可分为两个阶段:第一阶段以二战前后控制论、信息论和一般系统论等的出现为标志,主要着眼于他组织系统的分析;第二阶段以耗散结构论、协同学、超循环论等为标志,主要着眼于自组织系统的研究。
信息学家魏沃尔指出:19世纪及其之前的科学是简单性科学;20世纪前半叶则发展起无组织复杂性的科学,即建立在统计方法上的那些学科;而20世纪后半叶则发展起有组织的复杂性的科学,主要是自组织理论,系统科学诸学科都着眼于世界的复杂性,确立了系统观点也即复杂性方法论原则,系统观点是对近代科学以分析为主的还原主义方法论和形而上学思维方式的一个反动。
根据我们对复杂性的讨论以及系统科学的具体内容,我们可以把复杂性方法论原则概括为以下几个方面:1、整体性原则。
系统观点的第一个方面的内容就是整体性原理或者说联系原理。
从哲学上说,所谓系统观点首先不外表达了这样一个基本思想:世界是关系的集合体,而非实物的集合体。
整体性方法论原则就根据于这种思想。
系统科学的一般理论可简单概括如下:所谓系统是指由两个或两个以上的元素(要素)相互作用而形成的整体。
所谓相互作用主要指非线性作用,它是系统存在的内在根据,构成系统全部特性的基础。
系统中当然存在着线性关系,但不构成系统的质的规定性。
系统的首要特性是整体突现性,即系统作为整体具有部分或部分之和所没有的性质,即整体不等于(大于或小于)部分之和,称之为系统质。
与此同时,系统组分受到系统整体的约束和限制,其性质被屏蔽,独立性丧失。
安全系统论原理系统原理就是运用系统理论对管理进行系统分析,以达到科学管理的优化目的。
系统原理的掌握和运用对提高管理效能有重大作用。
掌握和运用系统原理必须把握系统理论和系统分析。
1系统科学基本理论系统理论是指把对象视为系统进行研究的一般理论。
系统是指由若干相互联系、相互作用的要素所构成的有特定功能与目的的有机整体。
系统按其组成性质,分为自然系统、社会系统、思维系统、人工系统、复合系统等,按系统与环境的关系分为孤立系统、封闭系统和开放系统。
系统具有以下六方面的特性。
1.1整体性指充分发挥系统与系统、子系统与子系统之间的制约作用,以达到系统的整体效应。
1.2稳定性即系统由于内部子系统或要素的运动,总是使整个系统趋向某一个稳定状态。
其表现是在外界相对微小的干扰下,系统的输出和输入之间的关系,系统的状态和系统的内部秩序(即结构)保持不变,或经过调节控制而保持不变的性质。
1.3有机联系性即系统内部各要素之间以及系统与环境之间存在着相互联系、相互作用的关系。
1.4目的性即系统在一定环境下,必然具有达到最终状态的特性,它贯穿于系统发展的全过程。
1.5动态性即系统内部各要素间的关系及系统与环境的关系是时间的函数,即随着时间的推移而转变。
1.6结构决定功能的特性系统的结构指系统内部各要素的排列组合方式。
系统的整体功能是由各要素的组合方式决定的。
要素是构成系统的基础,但一个系统的属性并不只由要素决定,它还依赖于系统的结构。
2系统基本分析系统分析是就如何确定系统的各组成部分及相互关系,使系统达到最优化而对系统进行的研究。
它包括以下六个方面。
了解系统的要素,分析系统是由哪些要素构成的;分析系统的结构,研究系统的各个要素相互作用的方式是什么;弄清系统的功能;研究系统的联系;把握系统历史;探讨系统的改进。
3安全系统的构成从安全系统的动态特性出发,人类的安全系统是人、社会、环境、技术、经济等因素构成的大协调系统。
无论从社会的局部还是整体来看,人类的安全生产与生存需要多因素的协调与组织才能实现。
第一章系统与系统工程第1讲基本概念1、系统的定义.系统是具有特定功能的、相互间具有有机联系的许多要素所组成的一个整体。
(有组织的或被组织化的整体)一个形成系统的诸要素的集合永远具有一定的特性,或者表现一定的行为,而这些特性或行为是它的任何一个部分都不具备的。
分析与综合的思想方式:在物质世界中,一个系统中的任何部分可以被看成一个子系统,而每一个系统又可以成为一个更大规模系统的一个部分。
2、系统的特性.①集合性. 系统的集合性表明系统是由两个或两个以上的可以互相区别的要素所组成的。
如:计算机系统(包括cpu、存储器、I/O设备等硬件、软件)②相关性. 组成系统的要素是相互联系、相互作用的,相关性说明这些联系之间的特定关系。
③层次性. 系统作为一个相互作用的诸要素的总体,它可以分解为一系列的子系统,并存在一定的层次结构,这是系统空间结构的特定形式。
在系统层次结构中表述了在不同层次子系统之间的从属关系或相互作用关系。
在不同的层次结构中存在着动态的信息流和物质流,构成了系统的运动特性,为深入研究系统层次之间的控制与调节功能提供了条件。
DCS系统为例④整体性. 具有独立功能的系统要素以及要素间的相互关系(相关性,层次性)是根据逻辑统一性的要求,协调存在于系统整体之中。
即:任何一个要素不能离开整体去研究,要素间的联系和作用也不能脱离整体的协调去考虑。
⑤目的性. 通常系统都具有某种目的,要达到既定的目的,系统都具有一定的功能,而这正是区别这一系统和那一系统的标志。
系统的目的一般用更具体的目标来体现,一般说来,比较复杂的系统都具有不止一个的目标,因此需要一个指标体系来描述系统的目标。
例:衡量一个工业企业的经营实绩,不仅要考核它的产量、产值指标,而且更重要的是要考核它的利润、成本和规定的质量指标完成情况。
在指标体系中,各个指标之间有时是相互矛盾的,有时是互为消长的。
为此,要从整体出发力求获得全局最优的经营效果,要在矛盾的目标之间做好协调工作,寻求平衡或折衷方案。
《系统工程导论》重点内容第一章系统与系统工程1、《黄帝内经》强调人体各器官的有机联系、生理现象与心理现象的联系,以及身体健康与自然环境的联系。
2、古代朴素唯物主义哲学思想虽然强调对自然界整体性、统一性的认识,却缺乏对这一整体各个细节的认识能力,因而对整体性和统一性的认识也是不完全的3、马克思、恩格斯的辩证唯物主义认为,物质是世界由许多相互联系、相互制约、相互依赖、相互作用的事物和过程形成的统一整体,这也就是系统的实质。
4、钱学森在《系统思想和系统工程》一文中指出:“系统思想是进行分析和综合的辩证思维工具,它在唯物主义那里取得了哲学的表达形式,在运筹学和其他系统科学那里取得了定量的表达方式,在系统工程那里获得了丰富的实践内容。
”5、“系统”一般认为是“群”与“集合”的意思。
6、系统的定义:系统可被定义为具有一定功能的、相互间具有有机联系的、由许多要素或构成部分组成的一个整体。
7、系统的概念包括以下五个要点:(1)由两个或两个以上的元素组成;(2)各元素之间相互联系、相互依赖、相互制约、相互作用;(3)各元素协同运作,使“系统”作为整体具有各组成元素单独存在时所没有的某种特定功能;(4)系统是运动和发展变化的,是动态的过程;(5)“系统”的运动具有明确的目标;由此可见,一台机器、一个部门、一项计划、一个研究项目、一种组织、一套制度都可看成一个系统。
8、在现实世界中,任何一个系统都是可分的。
因此,系统是有层次的,任何一个系统都有它的层次结构、规模、坏境与功能9、从系统的定义可以看出,所有系统都具有以下几个共同特性:(1)层次性:层次性是系统最基本的特性之一。
系统本身又属于另外一个更强大的子系统,这就充分反映了系统所具有的层次性。
(2)整体性:系统整体性说明,具有独立功能的系统要素以及要素间的相互关系(相关性、阶层性)根据逻辑统一性的要求,协调存在于系统整体之中。
(3)集合性。
集合就是把具有某种属性的一些对象看成一个完整的整体,从而形成一个集合,集合离的各个对象叫做集合的要素(子集),系统的集合性表明,系统是由两个或两个以上可以互相区别的要素组成的。
一般系统论的主要内容及其应用一般系统论的主要内容及其应用研究系统思想和系统方法的哲学理论﹐又称系统观。
辩证唯物主义认为﹐物质世界是由无数相互联系﹑相互依赖﹑相互制约﹑相互作用的事物和过程所形成的统一整体﹐这就是系统普遍存在性的哲学基础。
系统思想和系统方法又为辩证唯物主义的发展提供了素材。
也有人将系统思想和一般系统论称为系统论﹐与控制论和信息论一起俗称三论。
研究复杂系统的一般规律的学科﹐又称普通系统论。
现代科学可按所研究的对象系统的具体形式划分成各门学科﹐如物理学﹑化学﹑生物学﹑经济学和社会学等﹔也可按研究方法划分成两大类别﹐即简单系统理论和复杂系统理论。
一般系统论是研究复杂系统理论的学科﹐着重研究复杂系统的潜在的一般规律。
历史背景系统的存在是客观事实﹐但人类对系统的认识却经历了漫长的岁月﹐对简单系统研究得较多﹐而对复杂系统则研究得较少。
直到20世纪30年代前后才逐渐形成一般系统论。
一般系统论来源于生物学中的机体论﹐是在研究复杂的生命系统中诞生的。
1925年英国数理逻辑学家和哲学家N.怀特海在《科学与近代世界》一文中提出用机体论代替机械决定论﹐认为只有把生命体看成是一个有机整体﹐才能解释复杂的生命现象。
1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。
1924~1928年奥地利理论生物学家贝塔朗菲﹐L.von多次发表文章表达一般系统论的思想﹐提出生物学中有机体的概念﹐强调必须把有机体当作一个整体或系统来研究﹐才能发现不同层次上的组织原理。
他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念﹐把协调﹑有序﹑目的性等概念用于研究有机体﹐形成研究生命体的三个基本观点﹐即系统观点﹑动态观点和层次观点。
1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。
第一章系统科学与系统工程1.1系统科学半个多世纪以来,在国际上“系统”作为一个研究对象引起了很多人的注意,吸引了众多领域的专家从事研究和应用,并逐步形成了一门新兴的学科体系,即“系统科学”。
“系统”(system)这一概念来源于人类长期的社会实践。
人们认识现实世界的过程是一个不断深化的过程。
在古代,哲学家往往把世界看成一个整体,寻求共性和统一,但由于科学技术理论的贫乏,又缺乏观测和实验手段,所以对很多事物只能看到一些轮廓和表面现象,往往是只见森林而不见树木。
随着科学技术的发展,理论逐渐丰富,工具与手段更先进了,认识也逐步深化,但仍受到当时科学技术水平的限制和世界观的局限,往往又只看到一些局部现象,致力于对微观现象的研究,以致只见树木而不见森林。
进入19世纪以来,认识不断深化。
在对个体、对局部有了更多、更深的了解以后,再把这些分散的认识联系起来,才看到了事物的整体,以及构成整体的各个部分之间的相互联系,从而形成了科学的系统观。
现代科学的发展比过去更要求在多种学科门类之间进行相互渗透,这是在更深刻地分析的基础上向更高一级综合发展的新阶段,因而出现了许多交叉学科与边缘学科。
系统科学也就是在这种背景下,在研究控制论、信息论、运筹学和一般系统论的过程中产生的一门交叉性学科。
现在它已发展成与自然科学、社会科学并列的基础科学,是一门独立于其他各门科学的学科。
1.1.1什么是系统“系统”一词来源于拉丁语的systema,一般认为是“群”与“集合”的意思。
长期以来,它存在于自然界、人类社会以及人类思维描述的各个领域,早已为人们所熟悉。
它频繁出现在学术讨论和社会生活中,但不同的人或同一个人在不同的场合会对它赋予不同的含义。
究竟什么是系统呢?我们在此采用钱学森给出的对系统的描述性定义:系统是由相互作用和相互依赖的若干组成部分结合的具有特定功能的有机整体。
这个定义与类似的许多定义一样,指出了作为系统的三个基本特征:●系统是由若干元素组成的;●这些元素相互作用、相互依赖;●由于元素间的相互作用,使系统作为一个整体具有特定的功能。