新课程高中数学选修课数学史选讲共153页文档
- 格式:ppt
- 大小:8.00 MB
- 文档页数:77
第一章数学发展概述§1 从数学的起源早期发展到初等数学形成一、数学的起源,早期发展(p1-p3)主要标志:数的概念、记数系统、算术、几何等初步形成。
1.数的概念和计数系统2.经验几何的发展中国最早的数学著作《周髀算经》中,记载了勾股定理。
古埃及在19世纪中期和末期发现两卷纸草书,一卷是“莱茵德草卷”,一卷是“莫斯科草卷”。
3.算术二、初等数学(常量数学的形成)(p3-p7)到公元16世纪,经过系统整理和理论概括形成初等数学,也就是常说的常量数学。
1.希腊(坚持数学中的演绎法和抽象方法)(1)欧几里得,著作《原本》(中文翻译:《几何原本》)是数学史上的第一座理论丰碑,其最大的攻绩在于确定了数学中的演绎模式。
(2)阿基米德对面积和体积的计算接近于积分计算。
(3)丢番图的《算术》是古希腊人在代数方面取得的最高成就,书中不仅解决了许多不定方程,而且开始用一套缩写符号表示代数问题,这为以后符号数学的发展开了先河。
2.中国(p4-p6)《九章算术》可追溯到公元前1世纪,它是中国最重要的数学著作,包含了丰富的数学成果,例如,算术方面的此例算术,盈不足术,代数方面的方程术、正负术、开方术等。
(P4)刘徽撰《九章算术注》,其中割圆术是极限思想的萌芽。
刘徽和南北朝时期的祖暅计算球体积的方法是积分学的萌芽。
公元5世纪的《张邱建算经》提出了世界著名的百鸡问题。
他发了三组答案,他是数学史上发出一题多解的第一人。
祖冲之,给出了 的上下界。
南朝《孙子算经》中有“物不知数”问题,通常称作“孙子问题”即孙子定理,中国剩余定理。
杨辉的著作《详解九章算经》中有一张珍贵的图——“开方作法本源图”,也即“贾宪三角,这张图给出了指数为正整数的二次式展开的系数表。
西方人把此三角称作“帕斯卡三角形”。
(p6)宋元一个最深刻的动向是向代数符号化的进展,这就是天元术与四元术的出现。
元朝李治所著《测圆海镜》和《益古演段》是最先阐述天元术的著作(天元术:设未知数列方程的一般方法)。
《高中数学新课程标准解读》第三部分内容标准(选修课程)二、选修课程系列1,系列2说明在完成必修课程学习的基础上,希望进一步学习数学的学生,可以根据自己的兴趣和需求,选择学习系列1,系列2。
系列1是为希望在人文、社会科学等方面发展的学生而设置的,包括2个模块,共4学分。
系列2则是为希望在理工、经济等方面发展的学生设置的,包括3个模块,共6学分。
系列1的内容分别为:选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系扩充与复数的引入、框图。
系列2的内容分别为:选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。
在系列1、系列2的课程中,有一些内容及要求是相同的,例如,常用逻辑用语、统计案例、数系扩充与复数等;有一些内容基本相同,但要求不同,如导数及其应用、圆锥曲线与方程、推理与证明;还有一些内容是不同的,如系列1中安排了框图等内容,系列2安排了空间中的向量与立体几何、计数原理、离散型随机变量及其分布等内容。
系列1选修1-1本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、导数及其应用。
正确地使用逻辑用语是现代社会公民应该具备的基本素质。
无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。
在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。
在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。
高中数学选修3-1:数学史选讲一、内容与要求通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。
完成一个学习总结报告。
对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写出自己的研究报告。
本专题由若干个选题组成,内容应反映数学发展的不同时代的特点,要讲史实,更重要的是通过史实介绍数学的思想方法,选题的个数以不少于6个为宜。
以下专题可供选择。
1.早期算术与几何--计数与测量◆ 纸草书中记录的数学(古代埃及)。
◆ 泥板书中记录的数学(两河流域)。
◆ 中国《周髀算经》、勾股定理(赵爽的图)。
◆ 十进位值制的发展。
2.古希腊数学◆ 毕达哥拉斯多边形数,从勾股定理到勾股数,不可公度问题。
◆ 欧几里德与《几何原本》,演绎逻辑系统,第五公设问题,尺规作图,公理化思想对近代科学的深远影响。
◆ 阿基米德的工作:求积法。
3.中国古代数学瑰宝◆ 《九章算术》中的数学(方程术、加减消元法、正负数)。
◆ 大衍求一术(孙子定理)。
◆ 中国古代数学家介绍。
4.平面解析几何的产生--数与形的结合◆ 函数与曲线。
◆ 笛卡尔方法论的意义。
5.微积分的产生--划时代的成就6.近代数学两巨星--欧拉与高斯◆ 欧拉的数学直觉。
◆ 高斯时代的特点(数学严密化)。
7.千古谜题--伽罗瓦的解答◆ 从阿贝尔到伽罗瓦(一个中学生数学家)。
◆ 几何作图三大难题。
◆ 近世代数的产生。
8.康托的集合论--对无限的思考◆ 无限集合与势。
◆ 罗素悖论与数学基础(哥德尔不完备定理)。
9.随机思想的发展◆ 概率论溯源。
◆ 近代统计学的缘起。
10.算法思想的历程◆ 算法的历史背景。
◆ 计算机科学中的算法。
11.中国现代数学的发展◆ 现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程。
二、说明与建议1.本专题不必追求数学发展历史的系统性和完整性,通过学生生动活泼的语言与喜闻乐见的事例呈现内容,使学生体会数学的重要思想和发展轨迹。
高中新课程数学史选讲的教学设计继山东、广东、海南、宁夏4省(区)的试验之后,普通高中数学新课程即将在全国范围内开始实施。
新课程的选修系列3-1“数学史选讲”并不是高考的内容,这部分内容要不要教?教什么?怎么教?这已成为人们关注的问题。
为此,我们对“毕达哥拉斯多边形数”这一专题的教学作了设计,并利用高中数学新课程教师培训的机会,就此对即将实施新课程的某地区的高中数学骨干教师进行了问卷调查,以了解高中数学教师对数学史专题教学设计的看法,为数学史选修课的教学提供参考。
1 “毕达哥拉斯多边形数”的教学设计《普通高中数学课程标准》强调,数学课程应“倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式”;使学生在解决问题时“不断地经历直观感知、观察发现、归纳类比、……抽象概括、演绎证明、反思与建构等思维过程”。
对于“数学史选讲”的教学,强调“要讲史实,更重要的是通过史实介绍数学的思想方法”。
“毕达哥拉斯多边形数”的教学设计就是基于以上理念和要求进行的。
先展示有关毕达哥拉斯的图片(如图1),让学生注意观察毕达哥拉斯身后的三角形图案,提出问题,引出知识点——毕达哥拉斯多边形数的概念。
给出前几个三角形点阵(图2),让学生观察它们的规律,归纳出第10个点阵、第n个点阵共含几个点?接着,引入三角形数概念,介绍历史背景知识,并引导学生类比钢管垛模型,图1 毕达哥拉斯推导第n个三角形数的一般公式(图3),指出毕氏学派已经获得前n个自然数求和公式。
图2 三角形数1、3、6、10图3 三角形数公式的推导再给出前几个正方形点阵(图4),让学生观察它们的规律,归纳出第10个点阵、第n 个点阵共含几个点?引入正方形数概念,并引导学生观察正方形数的构造规律(图5),推导第n个正方形数公式,指出毕氏学派已经得到奇数和公式。
图4 正方形数1、4、9、16图5 正方形数的两种构造:连续奇数之和与两个相邻三角形数之和再给出前几个长方形点阵(图6),让学生观察它们的规律。