第1章取代基效应
- 格式:ppt
- 大小:786.50 KB
- 文档页数:52
芳香烃的化学性质(一)一、苯的稳定性和加成反应比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。
但1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。
因此,尽管苯的C/H比值等于或大于不饱和烃的C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。
在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。
如苯和氯在下反应,就生成六氯代环己烷:催化加氢也是类似的,一步生成环己烷:苯的稳定性和加成反应比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。
但1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。
因此,尽管苯的C/H比值等于或大于不饱和烃的C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。
在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。
如苯和氯在下反应,就生成六氯代环己烷:催化加氢也是类似的,一步生成环己烷:二、苯及其同系物的氧化烯、炔在室温下可迅速地被高锰酸钾氧化,但苯即使在高温下与高锰酸钾、铬酸等强氧化剂同煮,也不会被氧化。
⾼等有机化学复习⾼等有机化学复习资料第⼆章:电⼦效应、空间效应2.1电⼦效应(I效应)(+ - 交替)(键的极性或极化。
)2.11诱导效应(逐级递减传递)—N+(CH3)3>—NO2> —CN > —F > —Cl > —Br > —I > —OH > —OCH3> —C6H5> —CH=CH2 > —H > —CH3 > — CH2CH3 > —C(CH3)3(吸电⼦能⼒⼤⼩)中间体稳定性:连的烷基越多的碳正离⼦和碳⾃由基的稳定性越⼤,⽽碳负离⼦的稳定性正相反羧酸酸性:带吸电基时将增加羧酸的酸性,带供电基时减⼩其酸性。
注:+N(CH3)3具有强烈的-I效应,很强的间位定位基,亲电取代⽐苯难于进⾏。
反应速率:羰基的亲核加成反应,羰基碳原⼦的电⼦云密度越低,就越容易和亲核试剂发⽣加成反应Cl3C—CHO >Cl2CHCHO > ClCH2CHO > CH3CHO2.12共轭效应(电⼦的离域)共轭键传递⽽不会明显削弱π-π共轭> p-π共轭>σ- π超共轭>σ-p 超共轭Y为吸电⼦基团时-吸电⼦共轭效应 (-C),X为供电⼦基团时-供电⼦共轭效应 (+C).2.13空间效应构象(位阻⼤时:a > e 键处于e键稳定)SN2反应,空间位阻愈⼤,反应速率慢。
CH3X>1°RX>2°RX>3°RXSN1反应:3°RX >2°RX >1°RX > CH3X消除反应:3o>2 o>1 oRX(E1或E2)总结:重点酸性:吸电⼦,酸性增强;供电⼦酸性减弱苯环上: 吸电⼦共轭效应--邻>对>间给电⼦共轭效应--邻>间>对邻位(诱导、共轭、场、氢键效应、空间效应均要考虑。
)对位(诱导很⼩、共轭为主。
)间位(诱导为主、共轭很⼩。
)空间位阻>电⼦效应第三章:反应机理苯炔历程,或消除-加成反应(P221)烯烃加溴历程:反式加成双键上电⼦云密度越⼤(烷基取代增多),反应速率越⼤。
有机化学基础知识点取代基的空间位阻效应有机化学中,取代基的空间位阻效应是指取代基的大小、形状和排列对有机分子反应中反应速率、反应产物和反应途径的影响。
取代基的空间位阻效应在有机化学的反应机理、立体化学和合成策略等方面起着重要的作用。
本文将介绍有机化学中的一些基本知识点,并探讨取代基的空间位阻效应对化学反应的影响。
1. 取代基的大小和形状对反应速率的影响取代基的大小和形状对反应速率有着显著的影响。
一般来说,较大的取代基会增加分子的空间位阻,使得反应速率变慢。
这是因为取代基的大小和形状会影响分子之间的相互作用和碰撞频率。
例如,在亲电取代反应中,取代基的体积增大会减小反应的速率常数,使反应变得更加缓慢。
另一方面,较小的取代基则会增加反应速率,因为它们在反应过程中占据较小的空间。
2. 取代基的排列对反应产物的选择性的影响取代基的排列方式对反应的产物选择性也具有重要影响。
在环状化合物中,取代基的排列方式可以决定产物的构型。
例如,在环状烯烃的氢化反应中,取代基的空间位阻会导致产物为顺式异构体或反式异构体。
取代基的排列方式还会影响反应的立体选择性。
在亲核取代反应中,取代基的排列会影响亲核试剂的进攻方向,从而决定反应的立体化学。
3. 取代基的位阻对反应途径的影响取代基的空间位阻也会导致反应途径的改变。
在某些情况下,取代基的位阻可能导致产物的不同反应途径。
例如,当取代基的空间位阻较大时,它会妨碍反应中的取代基发生亲电反应或亲核反应,从而改变反应的途径。
此外,取代基的位阻还可能导致反应中间体的稳定性变化,从而改变反应的产物分布。
总结:取代基的空间位阻效应在有机化学中具有重要作用。
它影响着反应速率、产物选择性和反应途径。
了解和掌握取代基的空间位阻效应对于研究有机反应机理、预测反应产物以及设计合成策略都具有重要意义。
因此,在有机化学的学习和应用中,理解取代基的空间位阻效应是非常重要的。
注:文章中的内容属于一般性的有机化学知识点介绍,仅供参考。
有机化学中的取代基效应在绪论中,我们提到了有机化合物可以按分子内的官能团进行分类。
官能团的性质在较大程度上决定了这类化合物的理化性质。
例如,羟基化合物一般都可以电离出质子,显示出酸性。
醇类化合物一般属于弱酸性物质,其酸性比水还弱。
酚类化合物的酸性则比水的明显要强,羧酸的酸性更强,属于中等强度的酸。
磺酸是一类酸性与硫酸相当的强酸。
几个代表性羟基化合物的pKa如下所示:羟基化合物(CH3)3COH CH3OH H2O C6H5OH CH3COOH CF3COOH C6H5SO3H pKa 18 17 15.74 9.99 4.76 0.23 -6.5很显然,不同类型的羟基化合物所呈现的酸性强度存在巨大的差别。
那么,究竟是何种因素导致酸性的这种巨大差异呢?第一章中已经述及,一种物质的酸性强弱取决于其电离出质子的能力大小,而质子的电离能力又取决于O–H键的键能和极性大小。
因此,上述pKa 值的差异说明,与羟基氧原子相连的基团的性质对O–H键的键能和极性产生了很大的影响。
为了更好地了解这些基团的影响,本章将系统地对这些基团影响官能团性质的方式进行介绍。
第一节共价键的极性与诱导效应有机化合物的基本结构是由碳氢所组成的。
由于碳原子和氢原子的电负性非常接近,分别为2.2和2.1,它们形成共价键时,成键的共用电子对在碳原子和氢原子核外出现的几率十分接近,这种共价键的极性很低,称为非极性共价键。
除了C–H键以外,常见的非极性共价键还包括C–C、C=C和C≡C键等。
形成共价键的两个原子若电负性差别较大,那么成键电子对出现在电负性大的原子核周围的几率会大于出现在电负性小的原子核周围的几率,这样就使得该共价键呈现极性。
常见的极性共价键包括C–X(碳卤键)、C–O、C=O、C–N、O–H、N–H、C=N、C≡N、N=O等。
一、诱导效应的定义共价键极性的产生会进一步影响分子内其它原子核周围的电子云密度分布情况。
以正丙烷分子为例,它属于非极性分子,其分子内各碳原子周围的电子云密度基本相同。