天津大学有机化学第一章 取代基效应 Substitution
- 格式:ppt
- 大小:1.40 MB
- 文档页数:22
在21世纪,物理有机化学家将会在更广阔的范围内,在相关的前沿交叉领域中寻找新的学科生长点,运用自己在理论、方法、概念和思维方式方面的特长和优势,研究新问题,发现新规律,为有机化学乃至整个科学事业的发展作出贡献。
其中主要包括生命过程中的化学问题,分子聚集体化学中的结构/活性关系和反应规律,新分子和新材料的分子设计、合成和构效关系,计算化学和理论有机化学,自由基化学,有机光化学等领域。
内容提要§1-1 诱导效应一、共价键的极性与静态诱导效应 二、静态诱导效应的强度 三、静态诱导效应的强度比较 四、烷基的诱导效应 五、动态诱导效应 六、诱导效应对反应活性的影响 §1-2 共轭效应一、电子离域与共轭效应 二、静态共轭效应 三、动态共轭效应 四、共轭体系 五、共轭效应与反应性 §1-3 超共轭效应一、超共轭效应的特点和方向 二、超共轭效应的表现和作用 §1-4 场效应和空间效应 一、场效应 二、空间效应第一章 取代基效应(Substituent Effects)反应的本质: 有机化合物的反应本质是旧键的断裂,新键的生成,这直接或间接与共价键的极性,即共价键上电子云的分布有关。
例:C C C O1234取代基效应 分子中的某个原子或原子团对整个分子或分子中其它部分产生的影响(包括对共价键极性及整个分子物理性质和化学的影响)。
取代基效应的分类 取代基效应电子效应: 诱导效应 共轭效应 超共轭效应 场效应: 空间传递空间效应:空助效应 位阻效应 §1-1 诱导效应(Inductive effect) 一、共价键的极性与静态诱导效应C CH CH 21.定义CCCl ddd取代基的影响→分子链传递Cl d→电子云密度分布不均匀CCl d取代基性质→分子链传递方向δCH 3 CH CH 2 +→转移的结果存在于未发生反应的分子中——IS2.特点结构特征 单、双、叁键 传递方式沿价键链传递诱导效应的相对强度 取决于取代基中心原子电负性的大小;取代基的个数——加和性传递强度 距离越大,强度越弱 3.方向CZC H Z -I标准+I二、静态诱导效应的强度1.根据中心原子在元素周期表中的位置判断同周期 -IFOHNH 2CH 3OR 2NR 3 +IONR同主族 -I —F > —Cl > —Br > —IPR 2NR 3+IOS2.带正电荷取代基的-I 强,带负电荷取代基的 +I 强-I NR 2NR3NO 2+IOOR3. 中心原子相同 不饱和度越大,-I 效应越强 -ICCRCHCHROORN NRNR 2三、静态诱导效应的强度比较 相对次序比较 1.根据酸碱的强度比较测定取代乙酸的电离常数,诱导效应强度次序如下:-I 效应NO 2N(CH 3)3CNFClBrIOHOCH3C 6H 5CH CH 2H+I 效应C(CH 3)3HCH(CH 3)2CH 2CH 3CH 32.根据偶极矩比较测定甲烷一取代物和溴代烷的偶极矩,诱导效应强度次序如下: -I 效应NO2CNFCl BrIH+I 效应C(CH 3)3CH 2CH(CH 3)2CHCH 2CH 3CH 3CH 2(CH 2)2CH 33.根据1H NMR 化学位移比较测定X -CH3中甲基的 值,比较取代基的诱导效应强度。
第一章 习题(一) 用简单的文字解释下列术语:(1)有机化合物:碳氢化合物及其衍生物。
(2) 键能:形成共价鍵时体系所放出的能量。
(3) 极性键:成鍵原子的电负性相差为0.5~1.6时所形成的共价鍵。
(4) 官能团:决定有机化合物的主要性质的原子或原子团。
(5) 实验式:能够反映有机化合物元素组成的相对比例的化学式。
(6) 构造式:能够反映有机化合物中原子或原子团相互连接顺序的化学式。
(7)均裂:共价鍵断裂时,两个成鍵电子均匀地分配给两个成鍵原子或原子团,形成两个自由基。
(8) 异裂:共价鍵断裂时,两个成鍵电子完成被某一个成鍵原子或原子团占有,形成正、负离子。
(9) sp 2杂化:由1 个s 轨道和2个p 轨道进行线性组合,形成的3个能量介于s 轨道和p 轨道之间的、能量完全相同的新的原子轨道。
sp 2杂化轨道的形状也不同于s 轨道或p 轨道,而是“一头大,一头小”的形状,这种形状更有利于形成σ键。
(10) 诱导效应:由于成键原子的电负性不同而引起的电子云的转移。
诱导效应只能通过σ键传递,并且随着碳链增长,诱导效应迅速减弱。
(11) 氢键:由氢原子在两个电负性很强的原子之间形成“桥梁”而导致的类似化学键的分子间或分子内作用力。
氢键具有饱和性和方向性,但作用力比化学键小得多,一般为20~30kJ/mol 。
(12) Lewis 酸:能够接受的电子的分子或离子。
(二) 下列化合物的化学键如果都为共价键,而且外层价电子都达到稳定的电子层结构,同时原子之间可以共用一对以上的电子,试写出化合物可能的Lewis 结构式。
(1)C H 3N H 2 (2) CH 3O C H 3 (3) CH 3C OH O(4) C H 3C H =C H 2 (5) C H 3C C H (6) CH 2O 解:分别以“○”表示氢原子核外电子,以“●”表示碳原子核外电子,以“★”表示氧原子核外电子,以“△”表示氮原子核外电子,题给各化合物的Lewis 结构式如下:(1)HH H H。
大学化学第18卷第6期2003年12月师生笔谈学习有机化学应注意掌握取代基效应高志农(武汉大学化学与分子科学学院武汉430072)摘要有机化学中的取代基效应涉及化合物的物理性质、酸碱性、反应活性以及反应的位置、类型、速度、平衡、产物等。
在熟知官能团一般特性的基础上,利用取代基效应可将各系列有机化合物千差万别的物理、化学性质有机地联系在一起,易于学习和掌握。
有机化学的初学者常会面对数量巨大、种类繁多的有机化合物以及复杂多样的化学反应而不知所措。
在有机化学教学中,教师经常被问到的问题是:有什么窍门能既快捷、有效地掌握有机化学的内容,而又不必死记硬背大量的性质和反应?对于这样的提问,我总会提请学生注意掌握取代基效应。
而学生经过一段时间的摸索与体会,都会认同取代基效应在有机化学中的重要地位和在学习有机化学中不可替代的作用。
1取代基效应及其重要影响取代基效应是分子中某些基团或原子所引起的电子效应和空间效应的总称。
多原子分子中一个键产生的极性将影响到分子的其余部分,电子的转移可以静电诱导方式沿分子链或空间传递,也可在共轭体系中由轨道离域或电子离域产生,前者称为电子的诱导效应,后者为共轭效应。
空间效应在有机化学中相当普遍,当分子内的原子或基团处于范德华半径不许可的范围时产生的排斥作用,或两个分子相互接近时由于基团之间的非键作用所引起的化学效应,都是空间效应的具体表现。
虽然有机化合物的性质主要取决于所含的官能团,但取代基效应会使官能团的性质发生很大变化。
如含有)COOH的化合物虽都有酸性,可成盐、酯化等,但不同结构的羧酸,其酸性不同甚至可以相差很远,化学性质也千差万别。
在极端情况下,取代效应甚至能完全改变原有官能团的性质,例如醇是中性的,但CF3CH2OH显酸性,而且其酸性较强,可以从Na2CO3中置换出CO2。
取代基效应的影响涉及到有机化学的很多方面,包括有机化合物的物理性质、酸碱性、反应活性,有机反应的类型、速度、平衡、位置及产物等,在教材中常用来解释芳香烃亲电取代反应的定位效应及活化、钝化,烯烃与卤化氢加成的反应速度与方向,卤代烃亲核取代反应和羰基亲核加成反应速度等;有些化学家甚至建立了有机化合物的取代基与性质之间的定量关系,如H ammett方程等。
第一章习题(一) 用简单的文字解释下列术语:(1)有机化合物:碳氢化合物及其衍生物。
(2)键能:形成共价鍵时体系所放出的能量。
(3)极性键:成鍵原子的电负性相差为0.5~1.6时所形成的共价鍵。
(4)官能团:决定有机化合物的主要性质的原子或原子团。
(5)实验式:能够反映有机化合物元素组成的相对比例的化学式。
(6)构造式:能够反映有机化合物中原子或原子团相互连接顺序的化学式。
(7)均裂:共价鍵断裂时,两个成鍵电子均匀地分配给两个成鍵原子或原子团,形成两个自由基。
(8)异裂:共价鍵断裂时,两个成鍵电子完成被某一个成鍵原子或原子团占有,形成正、负离子。
(9)sp2杂化:由1 个s轨道和2个p轨道进行线性组合,形成的3个能量介于s轨道和p轨道之间的、能量完全相同的新的原子轨道。
sp2杂化轨道的形状也不同于s轨道或p轨道,而是“一头大,一头小”的形状,这种形状更有利于形成σ键。
(10)诱导效应:由于成键原子的电负性不同而引起的电子云的转移。
诱导效应只能通过σ键传递,并且随着碳链增长,诱导效应迅速减弱。
(11)氢键:由氢原子在两个电负性很强的原子之间形成“桥梁”而导致的类似化学键的分子间或分子内作用力。
氢键具有饱和性和方向性,但作用力比化学键小得多,一般为20~30kJ/mol。
(12)Lewis酸:能够接受的电子的分子或离子。
(二) 下列化合物的化学键如果都为共价键,而且外层价电子都达到稳定的电子层结构,同时原子之间可以共用一对以上的电子,试写出化合物可能的Lewis结构式。
(1) C H3N H2(2) C H3O C H3(3) CH3C OHO(4) C H3C H=C H2(5) C H3C C H(6) CH2O解:分别以“○”表示氢原子核外电子,以“●”表示碳原子核外电子,以“★”表示氧原子核外电子,以“△”表示氮原子核外电子,题给各化合物的Lewis 结构式如下:(1) CHH H H。
N 。
第一章习题(一) 用简单的文字解释下列术语:(1)有机化合物:碳氢化合物及其衍生物。
(2)键能:形成共价鍵时体系所放出的能量。
(3)极性键:成鍵原子的电负性相差为0.5~1.6时所形成的共价鍵。
(4)官能团:决定有机化合物的主要性质的原子或原子团。
(5)实验式:能够反映有机化合物元素组成的相对比例的化学式。
(6)构造式:能够反映有机化合物中原子或原子团相互连接顺序的化学式。
(7)均裂:共价鍵断裂时,两个成鍵电子均匀地分配给两个成鍵原子或原子团,形成两个自由基。
(8)异裂:共价鍵断裂时,两个成鍵电子完成被某一个成鍵原子或原子团占有,形成正、负离子。
(9)sp2杂化:由1 个s轨道和2个p轨道进行线性组合,形成的3个能量介于s轨道和p轨道之间的、能量完全相同的新的原子轨道。
sp2杂化轨道的形状也不同于s轨道或p轨道,而是“一头大,一头小”的形状,这种形状更有利于形成σ键。
(10)诱导效应:由于成键原子的电负性不同而引起的电子云的转移。
诱导效应只能通过σ键传递,并且随着碳链增长,诱导效应迅速减弱。
(11)氢键:由氢原子在两个电负性很强的原子之间形成“桥梁”而导致的类似化学键的分子间或分子内作用力。
氢键具有饱和性和方向性,但作用力比化学键小得多,一般为20~30kJ/mol。
(12)Lewis酸:能够接受的电子的分子或离子。
(二) 下列化合物的化学键如果都为共价键,而且外层价电子都达到稳定的电子层结构,同时原子之间可以共用一对以上的电子,试写出化合物可能的Lewis结构式。
(1) C H3N H2(2) C H3O C H3(3) CH3C OHO(4) C H3C H=C H2(5) C H3C C H(6) CH2O解:分别以“○”表示氢原子核外电子,以“●”表示碳原子核外电子,以“★”表示氧原子核外电子,以“△”表示氮原子核外电子,题给各化合物的Lewis结构式如下:(1)H HHH。
N。
(2)HH。
有机化学中的取代基效应在绪论中,我们提到了有机化合物可以按分子内的官能团进行分类。
官能团的性质在较大程度上决定了这类化合物的理化性质。
例如,羟基化合物一般都可以电离出质子,显示出酸性。
醇类化合物一般属于弱酸性物质,其酸性比水还弱。
酚类化合物的酸性则比水的明显要强,羧酸的酸性更强,属于中等强度的酸。
磺酸是一类酸性与硫酸相当的强酸。
几个代表性羟基化合物的pKa如下所示:羟基化合物(CH3)3COH CH3OH H2O C6H5OH CH3COOH CF3COOH C6H5SO3H pKa 18 17 15.74 9.99 4.76 0.23 -6.5很显然,不同类型的羟基化合物所呈现的酸性强度存在巨大的差别。
那么,究竟是何种因素导致酸性的这种巨大差异呢?第一章中已经述及,一种物质的酸性强弱取决于其电离出质子的能力大小,而质子的电离能力又取决于O–H键的键能和极性大小。
因此,上述pKa 值的差异说明,与羟基氧原子相连的基团的性质对O–H键的键能和极性产生了很大的影响。
为了更好地了解这些基团的影响,本章将系统地对这些基团影响官能团性质的方式进行介绍。
第一节共价键的极性与诱导效应有机化合物的基本结构是由碳氢所组成的。
由于碳原子和氢原子的电负性非常接近,分别为2.2和2.1,它们形成共价键时,成键的共用电子对在碳原子和氢原子核外出现的几率十分接近,这种共价键的极性很低,称为非极性共价键。
除了C–H键以外,常见的非极性共价键还包括C–C、C=C和C≡C键等。
形成共价键的两个原子若电负性差别较大,那么成键电子对出现在电负性大的原子核周围的几率会大于出现在电负性小的原子核周围的几率,这样就使得该共价键呈现极性。
常见的极性共价键包括C–X(碳卤键)、C–O、C=O、C–N、O–H、N–H、C=N、C≡N、N=O等。
一、诱导效应的定义共价键极性的产生会进一步影响分子内其它原子核周围的电子云密度分布情况。
以正丙烷分子为例,它属于非极性分子,其分子内各碳原子周围的电子云密度基本相同。