09第三章-3函数的单调性
- 格式:pdf
- 大小:306.38 KB
- 文档页数:6
函数的单调知识点总结一、函数的增减性1. 函数的单调性定义函数的单调性是指函数在其定义域上的增减性质。
如果对于任意的$x_1, x_2 \in D$, $x_1 <x_2$,有$f(x_1) \le f(x_2)$,则称函数$f(x)$在定义域上是单调不减的;如果对于任意的$x_1, x_2 \in D$, $x_1 < x_2$,有$f(x_1) \ge f(x_2)$,则称函数$f(x)$在定义域上是单调不增的。
2. 函数的单调性判定对于一个给定函数,要判定其在定义域上的增减性,可以通过对函数的导数进行分析来实现。
通常有以下几种方法:(1) 图像法:通过画出函数的图像,观察函数在定义域上的增减性。
(2) 导数法:计算函数的导数并分析其正负性来判定函数的单调性。
(3) 定义域划分法:对函数的定义域进行适当的划分,分别分析函数在各个子区间上的增减性。
3. 函数的单调性与最值函数的单调性可以帮助我们求解函数的最值。
如果一个函数在其定义域上是单调递增的,则其最小值为$f(x)$的最小值;如果一个函数在其定义域上是单调递减的,则其最大值为$f(x)$的最大值。
二、导数的应用1. 函数的导数导数是描述函数变化率的重要工具,它可以帮助我们研究函数的增减性。
对于可导函数$f(x)$,其导数$f'(x)$的正负性可以描述函数在某点附近的增减性。
具体来说:(1) 若$f'(x)>0$,则$f(x)$在$x$点附近是单调递增的;(2) 若$f'(x)<0$,则$f(x)$在$x$点附近是单调递减的。
2. 函数单调性与导数对于可导函数$f(x)$,如果$f'(x)>0$,则$f(x)$在其定义域上是单调递增的;如果$f'(x)<0$,则$f(x)$在其定义域上是单调递减的。
这是函数的单调性与导数之间的重要联系,也是求解函数的单调性的重要方法。
函数单调性高三复习知识点函数单调性是高中数学中的重要知识点之一,它在数学分析、代数学等学科中有着广泛的应用。
本文将就函数单调性的定义、性质、证明方法等方面进行高中复习知识点的总结。
一、函数单调性的定义与性质在数学中,函数单调性是指函数对于定义域内的任意两个不同的自变量取值,其函数值的变化关系。
具体而言,若函数在定义域D上满足对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) < f(x_2),则称该函数在D上为递增函数;若对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) > f(x_2),则称该函数在D 上为递减函数。
函数的单调性可以用图像直观地表示出来。
对于递增函数,其图像从左往右呈上升趋势;对于递减函数,其图像从左往右呈下降趋势。
而对于函数的单调性来说,如果一个函数既是递增函数又是递减函数,那么它在整个定义域上是无单调性的。
二、函数单调性的证明方法1. 利用导数的符号进行证明函数的单调性与函数的导数有着密切的关系。
对于给定的函数,如果在定义域内的某个区间上导数的取值恒为正值,则函数在该区间上为递增函数;如果导数的取值恒为负值,则函数在该区间上为递减函数。
证明函数单调性的关键是分析函数的导数符号。
可以通过导数的定义及相关的数学推理,找出导数在某个区间上的符号,从而得出函数在该区间上的单调性。
2. 利用函数的增减性进行证明对于函数f(x),若在定义域内的任意两个不同的自变量取值x_1和x_2,若有f(x_1) < f(x_2),则函数在x_1和x_2之间取任意值时均满足f(x_1) < f(x) < f(x_2),则称函数在x_1和x_2之间是递增的。
反之,如果有f(x_1) > f(x_2),则称函数在x_1和x_2之间是递减的。
基于这个性质,可以通过选择不同的x_1和x_2来判断函数的单调性。
如果对于所有的x_1 < x_2,都有f(x_1) < f(x_2),则函数为递增函数;如果对于所有的x_1 < x_2,都有f(x_1) > f(x_2),则函数为递减函数。