练习一 多元正态分布的参数估计
- 格式:doc
- 大小:138.50 KB
- 文档页数:2
思考与练习2.1 试述多元联合分布和边缘分布之间的关系。
2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。
2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:()()()()()()()()()121122222,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦=−−其中,。
求:12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。
⑵ 随机变量1X 和2X 的协方差和相关系数。
⑶ 判断1X 和2X 是否相互独立。
2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。
2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号目前工资 (美元)受教育年限(年)初始工资 (美元)工作经验(月)11 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。
2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1~(,p N nX μΣ)。
2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。
2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。
第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
第二章多元正态分布的参数估计1.随机向量:将p个随机变量的整体称作p维随机向量,记为同时对p个指标(变量)进行了n次观测,这p个指标为,常用向量表示对同一个体观测的p个变量注:横看表示为第a个样品的观测值,记为竖看表示为对第j个变量的n次观测值,记为上表可用矩阵表示为(1)离散型随机向量:设是p维随机向量,若存在有限个或可列个p 维数向量,记,,满足,则X为离散型随机向量,为X的概率分布(2)连续型随机变量:设,若存在一个非负函数,使得对一切x均有,则X为连续型随机变量,为分布密度函数其中,应满足条件:i.ii.2.多元分布:设是p维随机向量,它的多元分布函数定义为,记为。
其中表示p维欧氏空间3.边缘(或边际)分布:设是p维随机向量,由它的q(<p)个分量组成的子向量的分布为X的边缘分布假定正好是X的前q个分量,其中p-q个分量为,则,相应的取值也分为了两部分。
当X的分布函数为时,的分布函数即边缘分布函数为;当X有分布密度时,则的边缘密度函数为注:相互独立——p个随机变量的联合分布等于各自的边缘分布的乘积4.随机向量的均值向量/数学期望:设,若存在且有限,则称为X的均值(向量)或数学期望,有时也把分别记为,即,容易得到均值(向量)有以下性质:其中,X和Y为随机向量,A和B为大小适合运算的常数矩阵5.随机变量的方差或协差阵:设,称为X的方差或协差阵,有时候把D(X)简记为,简记为,从而有随机变量X和Y的协差阵为当X=Y时,即为D(X)注:独立一定不相关,不相关不一定独立当A和B为常数矩阵时,协差阵有如下性质:注:对任何随机向量来说,其协差阵都是对称阵,大多情况下是正定的6.相关系数:若的协差阵存在,且每个分量的方差大于0,则称随机向量X的相关阵为,为的相关系数。
7.指标的标准化处理:,令,有,则即标准化数据的协差阵=原指标的相关阵8.多元正态分布:X服从p元正态分布,也称X为p维正态随机分布,简称9.多元样本的数字特征样本资料可以用矩阵表示为(1)样本均值向量:(2)样本离差阵:(3)样本协差阵:(4)样本相关阵:其中,10.①②③④11.的性质①②③12.维希特(Wishart)分布设且相互独立,则由组成的随机矩阵:的分布称为非中心Wishart分布,记为。
第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有)v (p )u (p )uv (p =,则称X 与Y 相互独立。
2.多元分析处理的数据一般都属于 横截面 数据。
3.多元正态向量()'=X X X p ,,1 的协方差阵∑是 对角阵 ,则X 的各分量是相互独立的随机变量。
4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条 件是 p 'p 21p 21R )x ,,x ,x (,0)x ,,x ,x (f ∈∀≥和1dx dx dx )x ,,x ,x (f p 21-p 21-=⎰⎰+∞∞+∞∞ 。
5.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= ),n (W k1i i p ∑∑=。
二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。
正确2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。
错误3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 正确4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。
正确5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也是正定阵。
错误6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。
正确7.多元正态分布的任何边缘分布为正态分布,反之一样。
错误8.多元样本中,不同样品之间的观测值一定是相互独立的。
正确9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。
多元正态分布的参数估计多元正态分布是一种常用的概率分布,描述多个随机变量之间的关系。
在实践中,我们经常需要从样本数据中估计多元正态分布的参数,以便进行进一步的分析和预测。
本文将介绍多元正态分布的参数估计方法,并讨论其理论基础和实际应用。
f(x) = (2π)^(-k/2) * ,Σ,^(-1/2) * exp(-0.5 * (x-μ)^T *Σ^(-1) * (x-μ))其中,x为k维向量,μ为k维均值向量,Σ为k×k维协方差矩阵,Σ,表示Σ的行列式。
1.基于矩估计基于矩估计是一种常用的参数估计方法,其思想是通过样本矩的估计值来估计分布的参数。
对于多元正态分布,可以使用样本均值和样本协方差矩阵作为分布的参数估计。
样本均值的估计值为:μ' = (1/n) * ∑xi样本协方差矩阵的估计值为:Σ' = (1/n) * ∑(xi-μ')(xi-μ')^T其中,n为样本容量。
基于矩估计的优点是计算简单且具有良好的渐进性质。
然而,它也存在一些缺点,例如对于小样本容量或存在异常值的情况,估计结果可能不准确。
2.基于极大似然估计基于极大似然估计是一种基于概率密度函数构造似然函数,通过最大化似然函数来估计分布参数。
对于多元正态分布,可以通过最大化样本观测值出现的联合概率密度函数的乘积来估计分布的参数。
似然函数为:L(μ, Σ) = ∏f(xi)对数似然函数为:l(μ, Σ) = logL(μ, Σ) = ∑logf(xi)通过对数似然函数l(μ,Σ)对μ和Σ分别求偏导,并令偏导数为0,可以得到极大似然估计的解析解。
基于极大似然估计的优点是可以利用样本数据中的所有信息来估计参数,因此具有较好的统计性能。
然而,由于求解复杂度较高,往往需要使用数值优化算法来获得参数估计的数值解。
总结起来,多元正态分布的参数估计可以通过基于矩估计或基于极大似然估计的方法进行。
基于矩估计适用于样本容量较大且符合正态分布的情况,计算简单但精度较低。
第三讲多元正态分布参数估计多元正态分布是指具有多个随机变量的正态分布。
在多元正态分布参数估计中,我们要估计的是均值向量和协方差矩阵。
估计均值向量可以使用样本均值。
给定一个样本集合$X=\{x_1,x_2,...,x_n\}$,其中每个$x_i$是一个m维向量,样本均值可以通过对每个维度上的观测值的平均值进行计算。
即$\hat{\mu}=\frac{1}{n}\sum_{i=1}^{n} x_i$。
估计协方差矩阵可以使用样本协方差矩阵。
样本协方差矩阵是通过计算样本集合与均值向量的差的转置乘以差的平均值进行计算的。
即$\hat{\Sigma}=\frac{1}{n}\sum_{i=1}^{n} (x_i-\hat{\mu})(x_i-\hat{\mu})^T$。
然而,在实际应用中,样本量有限,样本集合可能包含较少的观测值,这可能会导致估计不准确。
为了解决这个问题,可以使用更健壮的估计方法,如Shrunkage估计。
Shrunkage估计是通过在样本协方差矩阵与总体协方差矩阵之间做权衡来获得更准确的估计。
它通过引入收缩参数$\lambda \in [0,1]$来平衡两个协方差矩阵。
Shrunkage估计的公式为$\hat{\Sigma}_{sh}=(1-\lambda)\hat{\Sigma}+\lambda \hat{\Sigma}_{pool}$,其中$\hat{\Sigma}_{pool}=\frac{1}{n}\sum_{i=1}^{n} x_ix_i^T$是样本数据的池化协方差矩阵。
Shrunkage估计的优点在于它能够通过权衡样本数据与总体数据来获得更准确的估计。
当样本量较小或样本协方差矩阵存在较大误差时,Shrunkage估计可以减小估计偏差,提高估计的准确性。
此外,还可以使用最大似然估计(MLE)来估计多元正态分布的参数。
MLE是通过最大化给定数据的概率函数来确定参数的值。
对于多元正态分布,MLE可以通过最大化对数似然函数来实现。
练习一 多元正态分布的参数估计
1.试叙述多元联合分布和边际分布之间的关系。
2.设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
3.已知随机向量12()X X '的联合密度函数为
1212122
2
2[()()()()2()()]
(,)()()
d c x a b a x c x a x c f x x b a d c --+-----=
--
其中1a x b ≤≤,2c x d ≤≤。
求
(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
4.设12(,,)p X X X X '= 服从正态分布,已知其协方差矩阵∑为对角阵,证明其分量是相互独立的随机变量。
5. 影响粮食产量的因素很多, 大致可分为三个层次:第一层次是宏观因素。
主要有三种,一是制度创新, 如20世纪50年代初的土地改革、60年代初的“ 三自一包”和 80年代初的联产承包责任制和现行的粮食直补及税费改革等。
二是政策导向, 如收购政策及价格、市场政策结构调整、储备政策、财政投人、政府抓粮食生产的力度等。
三是科技进步,如良种的培育、播种技术的改进、机械化程度的提高等等, 特别是杂交水稻的发明, 是粮食生产的一次绿色革命, 大大地提高了粮食单位面积产量。
第二层次是中观因素。
主要有粮食播种面积、单位面积产量、受灾面积等等, 这些因素是影响粮食产量的直接因素。
第三层次是微观因素, 主要有有效灌溉面积、化肥施用量、农业机械化程度、财政三项投入等。
为了分析粮食产量的影响因素及其影响程度,将用1978一2007年的统计数据进行分析。
其中:Y 是粮食产量(万吨),X1是农业化肥试用量(万吨),X2是粮食播种面积(千公顷),X3是成灾面积(千公顷),X4是农业劳动力(万人),X5是农业机械总动力(万千瓦)。
假定变量服从,根据样本资料求出均值向量和协方差矩阵的似然估计。
6.均值向量和协方差矩阵的极大似然估计具有哪些优良性质? 7.证明多元正态分布~(,)p N X μΣ样本均值向量~(,/)p N n X μΣ。
8.试证多元正态分布~(,)p N X μΣ的样本协方差矩阵
1
n -S 为Σ的无偏估计。
9.设(1)(2)()n X ,X ,...,X 是从多元正态分布~(,)p N X μΣ抽出的一个简单随机样本,试求
1
n -S 的分布。
10.设()i i X n p ⨯是来自(,)p i i N μΣ的简单随机样本,1,2,3,,i k = , (1)已知2...k ====1μμμμ且2...k ====1ΣΣΣΣ,求μ和Σ的估计。
(2)已知2...k ====1ΣΣΣΣ求2,,...,,k 1μμμ和Σ的估计。