第二章-多元正态分布的参数估计
- 格式:ppt
- 大小:2.12 MB
- 文档页数:61
思考与练习2.1 试述多元联合分布和边缘分布之间的关系。
2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。
2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:()()()()()()()()()121122222,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦=−−其中,。
求:12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。
⑵ 随机变量1X 和2X 的协方差和相关系数。
⑶ 判断1X 和2X 是否相互独立。
2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。
2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号目前工资 (美元)受教育年限(年)初始工资 (美元)工作经验(月)11 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。
2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1~(,p N nX μΣ)。
2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。
2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。
第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第2章多元正态分布参数估计多元正态分布是多元随机变量的一种常见模型。
在实际问题中,我们常常需要通过已有的数据对多元正态分布的参数进行估计,便于进行后续的统计分析和预测。
多元正态分布的参数估计主要包括均值向量和协方差矩阵的估计。
对于均值向量的估计,最简单的方法是直接计算样本均值。
假设我们有一个包含n个样本的数据集,其中每个样本有d个维度的观测值,我们可以将样本数据表示为一个n×d的矩阵X。
则样本均值向量的估计值μ可以通过以下公式得到:μ = (1/n) * Σxi其中,xi表示第i个样本观测值。
对于协方差矩阵的估计,最常用的方法是样本协方差矩阵的估计。
样本协方差矩阵S的估计值可以通过以下公式得到:S = (1/n) * Σ(xi - μ)(xi - μ)T其中,T表示矩阵的转置。
需要注意的是,样本协方差矩阵的估计是基于样本的二阶矩估计,因此在数据量较小的情况下,估计结果可能存在偏差。
为了减小估计结果的偏差,可以使用修正样本协方差矩阵的估计。
修正样本协方差矩阵的估计值可以通过以下公式得到:S = ((n-1)/n) * Σ(xi - μ)(xi - μ)T其中,n-1是修正系数。
除了样本协方差矩阵,也可以使用样本相关系数矩阵来估计多元正态分布的协方差矩阵。
样本相关系数矩阵R的估计值可以通过以下公式得到:rij = sij / (si * sj)其中,sij表示样本协方差矩阵的元素,si和sj分别表示样本标准差。
需要注意的是,当样本量较小或者存在样本相关系数为1的情况时,样本相关系数矩阵的估计结果可能不可靠,此时推荐使用样本协方差矩阵来估计。
在实际问题中,参数估计是多元正态分布分析的重要步骤。
通过对样本数据进行参数估计,我们可以对多元正态分布的均值和协方差矩阵有一个初步的认识,从而便于进行后续的模型建立、参数推断和预测。
同时,合理的参数估计方法也有助于提高分析结果的精度和可靠性。
总之,多元正态分布参数估计是一个对多元随机变量的观测数据进行统计分析的重要任务。
第二章多元正态分布的参数估计多元正态分布是在多个随机变量之间存在相互依赖关系时使用的一种概率分布。
它在许多统计分析和机器学习领域中都有广泛的应用。
在实际应用中,我们通常需要使用样本数据对多元正态分布的参数进行估计。
多元正态分布由均值向量和协方差矩阵两个参数来描述。
均值向量表示各个随机变量的平均值,而协方差矩阵表示各个随机变量之间的协方差。
参数估计的目标就是通过样本数据来估计这两个参数。
首先,我们需要收集一个具有充分样本量的数据集。
对于一个具有n个样本的多元正态分布,我们可以将样本数据表示为一个n行d列的矩阵X,其中每一行是一个d维的样本向量。
其中n表示样本数量,d表示随机变量的个数。
接下来,我们可以根据样本数据来估计多元正态分布的均值向量和协方差矩阵。
1.均值向量的估计:多元正态分布的均值向量可以通过样本均值向量来估计。
样本均值向量的计算公式如下:μ = (1/n) * Σxi其中μ是估计得到的均值向量,xi表示样本矩阵X的第i行。
2.协方差矩阵的估计:多元正态分布的协方差矩阵可以通过样本协方差矩阵来估计。
Σ=(1/(n-1))*(X-μ)'*(X-μ)其中Σ是估计得到的协方差矩阵,X是样本矩阵,μ是估计得到的均值向量。
需要注意的是,在计算协方差矩阵时,我们使用的是样本协方差矩阵而不是总体协方差矩阵。
这是因为样本协方差矩阵能更好地反映样本数据的真实情况。
以上就是多元正态分布的参数估计方法。
通过样本数据,我们可以使用样本均值向量和样本协方差矩阵来估计多元正态分布的参数。
这些参数估计能为我们提供关于多元正态分布的统计属性和特征,进而用于进一步的分析和应用。
第二章多元正态分布的参数估计实验目的:熟练应用计算机软件进行均值向量、协差阵的估计,提高计算机分析应用能力。
频数分析SPSS操作方法1. 选择菜单Analyze→Descriptive Statistics→Frequencies,打开Frequencies 对话框,如图2-1。
将欲进行频数分析的变量a1移入Variable列表框中。
Display frequency tables复选框询问是否输出频数分布表。
由于频数分析基本就是通过频数分布表来表现的,所以一般情况下都要选择这个选项。
图2-1 Frequencies对话框2. 单击Statistics按钮,调出Statistics子对话框,如图2-2,选择输出的描述性统计量。
该对话框包含以下选项:Percentile Values选项栏:输出各种百分位数。
该选项栏共有三个可选项。
其中,Quartiles输出四分位数;Cut points for n equal groups输出n分位数,n为用户定义的2-100之间的整数;Percentile可以有选择地输出百分位数,方法是在后面的输入框中输入2-100之间的整数,并点击Add按钮确认添加。
Central Tendency选项栏:输出各种集中趋势指标,包括算术平均数、中位数、众数和总和。
◆Dispersion选项栏:输出各种离散程度指标。
◆Distribution选项栏:输出峰度和偏度指标。
所以在本节中我们仅选择输出Descriptives命令的Options子对话框(图2-7)中所没有的分位数指标。
这里选择Quartiles,输出四分位数。
图2-2 Statistics子对话框2. 单击Charts按钮,打开Charts子对话框,设置生成的统计图,如图2-3。
对话框中有两个选项栏:◆Chart Type选项栏:设置生成统计图的类型。
共四个选项,None表示不生成任何统计图,Bar charts生成条形图,Pie charts生成饼图,Histograms生成直方图。
多元数据分析练习题第二章多元正态的参数估计一. 判断题(1)若∑∑=),,(~),,,(21μp T p N X X X X 是对角矩阵,则p X X X ,,,21 相互独立。
( )(2)多元正态分布的任何边缘分布为正态分布,反之也成立。
( )(3)对任意的随机向量T p X X X X ),,,(21 =来说,其协方差矩阵∑是对称矩阵,并且总是半正定的。
( )(4)对标准化的随机向量来说,它的协方差矩阵与原来变量的相关系数阵相同。
( ) (5)若),,(~),,,(21∑=μp T p N X X X X S X ,分别为样本均值和样本协差阵,则S nX 1,分别为∑,μ的无偏估计。
( ) 二.计算题1. 假设随机向量TX X X X ),,(321=的协方差矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∑9232443416,试求相关系数矩阵R 。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=131413112141211R 2. 假设随机向量Tx x x ),(21=的协方差矩阵为⎥⎦⎤⎢⎣⎡=∑20119,令212211,2x x y x x y -=+=,试求T y y y ),(21=的协方差矩阵。
⎥⎦⎤⎢⎣⎡--=∑2733603.假设⎥⎦⎤⎢⎣⎡---=∑5.005.05.015.0),,(~3A N X μ,其中T)1,2,1(-=μ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411121112,试求Ax y =的分布。
)2224,02(2⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-N 三.证明题1.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,X 为样本均值。
试证明:μ=)(X E ,∑=nX D 1)(。
2.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,S n 11-为样本协差阵。
试证明:∑=-)11(S n E 。
3.证明:若p 维正态随机向量),,,(21'=p X X X X 的协差阵为对角矩阵,则X 的各分量是相互独立的随机变量。