第九章组合变形的强度计算
- 格式:ppt
- 大小:764.00 KB
- 文档页数:49
§9.1 组合变形概述前面研究了杆件在拉伸(压缩)、剪切、扭转和弯曲四种基本变形时的强度和刚度问题。
但在工程实际中,许多构件受到外力作用时,将同时产生两种或两种以上的基本变形。
例如建筑物的边柱,机械工程中的夹紧装置,皮带轮传动轴等。
我们把杆件在外力作用下同时产生两种或两种以上的基本变形称为组合变形。
常见的组合变形有:1。
拉伸(压缩)与弯曲的组合;2.弯曲与扭转的组合;3.两个互相垂直平面弯曲的组合(斜弯曲);4。
拉伸(压缩)与扭转的组合。
本章只讨论弯曲与扭转的组合。
处理组合变形问题的基本方法是叠加法,将组合变形分解为基本变形,分别考虑在每一种基本变形情况下产生的应力和变形,然后再叠加起来。
组合变形强度计算的步骤一般如下:(1)外力分析将外力分解或简化为几种基本变形的受力情况;(2) 内力分析分别计算每种基本变形的内力,画出内力图,并确定危险截面的位置;(3) 应力分析在危险截面上根据各种基本变形的应力分布规律,确定出危险点的位置及其应力状态。
(4)建立强度条件将各基本变形情况下的应力叠加,然后建立强度条件进行计算。
§9。
2 弯扭组合变形强度计算机械中的转轴,通常在弯曲和扭转组合变形下工作.现以电机为例,说明此种组合变形的强度计算。
图10-1a所示电机轴,在轴上两轴承中端装有带轮,工作时,电机给轴输入一定转矩,通过带轮的皮带传递给其它设备。
带紧边拉力为F T1,松边拉力为F T2,不计带轮自重。
图10—1(1)外力分析将作用于带上的拉力向杆的轴线简化,得到一个力和一个力偶,如图10-1(b),其值分别为力F使轴在垂直平面内发生弯曲,力偶M1和电机端产生M2的使轴扭转,故轴上产生弯曲和扭转组合变形。
(2)内力分析画出轴的弯矩图和扭矩图,如图10—1(c)、(d)所示。
由图知危险截面为轴上装带轮的位置,其弯矩和扭矩分别为(3) 应力分析由于在危险截面上同时作用有弯矩和扭矩,故该截面上必然同时存在弯曲正应力和扭转切应力,如图10—1(e),a、b两点正应力和切应力均分别达到最大值,为危险点,该两点正应力和切应力分别为该两点的单元体均属于平面应力状态,图10-1(f),故需按强度理论建立强度条件。
第6章 组合变形强度计算6.1 组合变形与弹性叠加原理6.1.1 组合变形的概念在工程实际中,有许多杆件在外力作用下会产生两种或两种以上的基本变形,这种情况称为组合变形。
如图6-1(a )所示小型压力机的框架。
为分析框架立柱的变形,将外力向立柱的轴线简化(图6-1b ),便可看出,立柱承受了由F 引起的拉伸和由Fa M =引起的弯曲。
图6-16.1.2 弹性叠加原理弹性叠加原理也称为线性叠加原理。
该原理对于求解弹性力学问题极为有用,它使我们可以把一个复杂问题化为两个或多个简单问题来处理。
在分析组合变形时,可先将外力进行简化或分解,把构件上的外力转化成几组静力等效的载荷,其中每一组载荷对应着一种基本变形。
例如,在行面对例子中,把外力转化为对应着轴向拉伸的F 和对应着弯曲的M 。
这样,可分别计算每一基本变形各自引起的应力、内力、和位移,然后将所得结果叠加,便是构件在组合变形下的应力、内力、应变和位移,这就是叠加原理。
现在再作一些更广泛的阐述。
设构件某点的位移与载荷的关系是线性的,例如,在简支梁的跨度中点作用集中力F 时,右端支座截面的转角为EIFl 162=θ这里转角θ与载荷F 的关系是线性的。
EI l 162是一个系数,只要明确F 垂直于轴线且作用于跨度中点,则这一系数与F 的大小无关。
类似的线性关系还可举出很多,可综合为,构件A 点因载荷1F引起的位移1δ与1F 的关系是线性的,即111F C =δ (a)这里1C 是一个系数,在1F 的作用点和方向给定后,1C 与1F 的大小无关,亦即1C 不是1F 的函数。
同理,A 点因另一载荷引起的位移为222F C =δ (b )系数2C 也不是2F 的函数。
若在构件上先作用1F ,然后再作用2F 。
因为在未受力时开始作用1F ,这与(a )式所表示的情况相同,所以A 点的位移为11F C 。
在作用时2F ,因构件上已存在1F ,它与(b )式所代表的情况不同,所以暂时用一个带撇的系数'2C 代替2C ,得A 点的位移为22'F C 。