第八章 组合变形强度计算
- 格式:ppt
- 大小:2.49 MB
- 文档页数:50
第八章组合变形8.1 组合变形和叠加原理一、组合变形的概念1. 简单基本变形:拉、压、剪、弯、扭。
2. 组合变形:由两种或两种基本变形的组合而成的变形。
例如:烟囱、传动轴、吊车梁的立柱等。
烟囱:自重引起轴向压缩+ 水平方向的风力而引起弯曲;传动轴:在齿轮啮合力的作用下,发生弯曲+ 扭转立柱:荷载不过轴线,为压缩= 轴向压缩+ 纯弯曲Ph g水坝qPh g二、组合变形的计算方法1. 由于应力及变形均是荷载的一次函数,所以采用叠加法计算组合变形的应力和变形。
2. 求解步骤①外力分解和简化②内力分析——确定危险面。
③应力分析:确定危险面上的应力分布,建立危险点的强度条件。
§8.2 斜弯曲一、 斜弯曲的概念1. 平面弯曲:横向力通过弯曲中心,与一个形心主惯性轴方向平行,挠曲线在纵向对称面内。
2. 斜弯曲:横向力通过弯曲中心,但不与形心主惯性轴平行挠曲线不位于外力所在的纵向平面内。
二、斜弯曲的应力计算 1. 外力的分解对于任意分布横向力作用下的梁,先将任意分布的横向力向梁的两相互垂直的形心主惯性矩平面分解,得到位于两形心主惯性矩平面内的两组力。
位于形心主惯性平面内的每组外力都使梁发生平面弯曲。
如上所示简支梁。
2. 内力计算形心主惯性平面xOy 内所有平行于y 轴的外力将引起横截面上的弯矩z M ,按弯曲内力的计算方法可以列出弯矩方程z M 或画出z M 的弯矩图。
同样,形心主惯性平面xOz 内所有平行于z M 矩方程y M 或画出其弯矩图。
合成弯矩:2Z 2y M M M +=合成弯矩矢量M 与y 轴的夹角为:y z M Mtan =ϕ以上弯矩z M 和y M 均取绝对值计算,由力偶的矢量表示法可知,合成弯矩M 3. 计算xyz I zI y yz M M +=''+'=σσσ4. 轴的位置两平面弯曲组合成斜弯曲,只在横截面上正应力为零的点的连线才是斜弯曲的中性轴。
设中性轴上任一点的坐标)(00,y z ,将0y ,0z 代入应力计算公式,并令σ等于方程:零,得中性轴: 0M M 0y 0z =+yz I z I y中性轴与y 轴的夹角α,ϕαtan tan z z 00I I M M I I y z y y z y =⋅==5. 最大正压力中性轴把横截面分为两个区域,一个受拉区,另一个受压区,离中性轴最远的点,正应力最大。
第6章 组合变形强度计算6.1 组合变形与弹性叠加原理6.1.1 组合变形的概念在工程实际中,有许多杆件在外力作用下会产生两种或两种以上的基本变形,这种情况称为组合变形。
如图6-1(a )所示小型压力机的框架。
为分析框架立柱的变形,将外力向立柱的轴线简化(图6-1b ),便可看出,立柱承受了由F 引起的拉伸和由Fa M =引起的弯曲。
图6-16.1.2 弹性叠加原理弹性叠加原理也称为线性叠加原理。
该原理对于求解弹性力学问题极为有用,它使我们可以把一个复杂问题化为两个或多个简单问题来处理。
在分析组合变形时,可先将外力进行简化或分解,把构件上的外力转化成几组静力等效的载荷,其中每一组载荷对应着一种基本变形。
例如,在行面对例子中,把外力转化为对应着轴向拉伸的F 和对应着弯曲的M 。
这样,可分别计算每一基本变形各自引起的应力、内力、和位移,然后将所得结果叠加,便是构件在组合变形下的应力、内力、应变和位移,这就是叠加原理。
现在再作一些更广泛的阐述。
设构件某点的位移与载荷的关系是线性的,例如,在简支梁的跨度中点作用集中力F 时,右端支座截面的转角为EIFl 162=θ这里转角θ与载荷F 的关系是线性的。
EI l 162是一个系数,只要明确F 垂直于轴线且作用于跨度中点,则这一系数与F 的大小无关。
类似的线性关系还可举出很多,可综合为,构件A 点因载荷1F引起的位移1δ与1F 的关系是线性的,即111F C =δ (a)这里1C 是一个系数,在1F 的作用点和方向给定后,1C 与1F 的大小无关,亦即1C 不是1F 的函数。
同理,A 点因另一载荷引起的位移为222F C =δ (b )系数2C 也不是2F 的函数。
若在构件上先作用1F ,然后再作用2F 。
因为在未受力时开始作用1F ,这与(a )式所表示的情况相同,所以A 点的位移为11F C 。
在作用时2F ,因构件上已存在1F ,它与(b )式所代表的情况不同,所以暂时用一个带撇的系数'2C 代替2C ,得A 点的位移为22'F C 。