材料力学 组合变形的强度问题
- 格式:ppt
- 大小:2.17 MB
- 文档页数:87
材料力学材料的强度和变形行为材料力学是研究材料在外力作用下的强度和变形行为的学科。
在工程设计和材料选择过程中,了解材料的强度和变形行为对提高产品性能和安全性至关重要。
本文将探讨材料的强度和变形行为,并深入了解不同材料在外力作用下的特性。
一、材料的强度1. 强度的概念材料的强度是指材料能够抵抗外力的能力。
强度取决于材料的内部结构和晶格排列。
不同材料具有不同的强度特性,例如金属材料通常具有较高的强度,而陶瓷材料则表现出较低的强度。
2. 抗拉强度抗拉强度是指材料在受到拉伸力作用下能够承受的最大应力。
材料的抗拉强度可以通过拉伸试验来测定。
在拉伸试验中,材料样品会受到均匀的拉力,直至样品发生断裂。
通过测量断裂前的拉力和样品的初始截面积,可以计算出材料的抗拉强度。
3. 压缩强度压缩强度是指材料在受到压缩力作用下能够承受的最大应力。
与抗拉强度类似,材料的压缩强度也可以通过压缩试验来测定。
在压缩试验中,材料样品会受到均匀的压力,直至样品发生压碎。
通过测量压碎前的压力和样品的初始截面积,可以计算出材料的压缩强度。
4. 剪切强度剪切强度是指材料在受到剪切力作用下能够承受的最大应力。
剪切强度通常小于抗拉强度和压缩强度。
材料的剪切强度可以通过剪切试验来测定。
在剪切试验中,材料样品会受到剪切力,直至样品发生切断。
通过测量切断前的剪切力和样品的初始截面积,可以计算出材料的剪切强度。
二、材料的变形行为1. 弹性变形弹性变形是指材料在受到外力作用后能够恢复到原始形状和尺寸的能力。
弹性变形的特点是应变与应力成正比,材料在弹性变形时不会发生永久变形。
弹性模量是衡量材料弹性变形能力的重要参数,通常以杨氏模量或剪切模量表示。
2. 塑性变形塑性变形是指材料在受到外力作用后发生永久性变形的能力。
塑性变形的特点是应变与应力不再成正比,材料在塑性变形时会改变内部结构,形成新的晶粒和位错。
塑性变形可以通过延伸试验、压缩试验或弯曲试验来观察和测定。
材料力学组合变形材料力学是研究材料在外力作用下的力学性能和变形行为的学科。
组合变形是指将不同的材料组合在一起,并在外力作用下共同发生变形。
本文将探讨材料力学中的组合变形及其应用。
材料的组合变形主要有两种形式,即均匀变形和非均匀变形。
均匀变形是指组合材料中各个组分材料的变形均匀一致,不发生相对滑动或相对滑动微小。
在均匀变形中,组合材料的整体变形主要由各个组分材料的线弹性或体弹性共同引起。
例如,当钢筋混凝土受到拉力作用时,钢筋和混凝土发生均匀的拉伸变形。
非均匀变形是指组合材料中各个组分材料的变形不一致,发生相对滑动或相对滑动巨大。
在非均匀变形中,组合材料的整体变形主要由各个组分材料的弹性、塑性和断裂等共同引起。
例如,当金属板与橡胶层组合时,金属板可以发生弯曲变形,而橡胶层则可以发生弹性变形和形变。
组合变形在实际应用中有着广泛的应用。
首先,组合变形可以通过调节组分材料的比例和形状来实现特定的力学性能。
例如,通过调节纤维增强复合材料中纤维的方向和分布,可以显著改变其强度和刚度。
此外,通过组合不同的材料,还可以实现热膨胀系数匹配、界面应力分散等功能,从而降低材料的应力集中和断裂风险。
其次,组合变形还可以实现材料的远程感应和控制。
例如,利用形状记忆合金和橡胶组合的智能材料,在外力作用下可以实现形状变化和应变分布的调控。
这种材料可以应用于自适应结构、智能传感器等领域。
此外,通过组合不同的材料,还可以实现流变性能的调控,进而应用于动态振动控制等领域。
最后,组合变形还可以实现材料的多功能性和复合性能。
通过组合不同材料的优势,可以实现多功能材料的设计和制备。
例如,通过合理选择纳米材料和纤维增强复合材料等,可以实现具备高强度、低密度、耐热和导电等多种特性的复合材料。
此外,通过组合不同材料的力学性能,还可以实现弹性材料、减振材料和防护材料的设计与制备。
综上所述,材料力学中的组合变形是一种重要的力学现象,具有广泛的应用前景。
第八章强度理论与组合变形§8-1 强度理论的概念1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。
例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限σ,s铸铁破坏表现为脆性断裂失效,具有抗拉强度σ。
图9-1a,bb2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。
例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。
图(9-2a,b)例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。
图(9-3a )例4 常温静载条件下,圆柱形大理石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。
图9-3b3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为 []σσ≤ ,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为 []ττ≤ 。
建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是: 1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设; 2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。
3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。
§8-2四个强度理论1.最大拉应力准则(第一强度理论)基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。
表达式:u σσ=+max复杂应力状态321σσσ≥≥, 当01>σ, 1m a xσσ=+简单拉伸破坏试验中材料的正断抗力b u σσσ==1,032==σσ 最大拉应力脆断准则: b σσ=1(9-1a)相应的强度条件:[]bb n σσσ=≤1(9-1b)适用范围:虽然只突出 1σ 而未考虑 32,σσ 的影响,它与铸铁,工具钢,工业陶瓷等多数脆性材料的实验结果较符合。
材料力学性能与强度的关系研究材料的力学性能是指材料在受力下所表现出来的各种力学特性和行为。
强度是指材料在外力作用下抵抗破坏的能力。
研究材料力学性能与强度之间的关系,可以帮助我们了解材料的使用范围和优缺点,从而对材料的选择和设计提供科学依据。
一、强度对材料性能的影响强度是材料抵抗破坏的能力,是评估材料使用安全性的重要指标。
材料的强度与其内部组织结构和化学成分密切相关。
不同材料的强度范围存在巨大差异,比如金属材料强度一般较高,而塑料材料和木材的强度相对较低。
强度的高低直接影响材料的使用寿命和可靠性。
高强度材料在承受外力时不容易发生断裂,可以保持较长时间的稳定性,而低强度材料则容易变形或破坏。
因此,在工程实践中,通常使用强度较高的材料来制作需要承受大力或重要部件的结构,以确保其安全可靠性。
二、力学性能与强度的关系力学性能是指材料在受力下的各种力学特性,包括弹性模量、屈服强度、延伸率、断裂韧性等。
这些性能参数反映了材料在力学加载下所表现出的特性和行为。
对于同一种材料,其力学性能与强度之间存在一定的关系。
通常情况下,材料的强度越高,其力学性能也越好。
强度高的材料往往具有较高的弹性模量,表现出较大的刚性,具有更好的抗变形和抗断裂能力。
另外,强度与材料的延展性和韧性之间也存在关系。
在一般情况下,提高材料的强度可能会降低其延展性和韧性。
强度高的材料往往更加脆性,容易发生断裂,而延展性和韧性较好的材料则可以在受到外力时发生塑性变形而不断裂。
三、材料的选择与设计在实际的工程应用中,我们需要根据具体的需求和使用条件来选择合适的材料。
不同的工程要求对材料的力学性能和强度有不同的要求。
对于需要承受大力或重要部件的结构,我们通常选择强度较高的材料,以确保其安全可靠性。
比如在航天航空领域,常使用高强度的合金材料来制作发动机部件和机身结构,以应对极端的工作环境和剧烈的振动。
而在一些要求材料具有一定延展性的应用中,我们则需要选择具有一定韧性的材料,以能够在受到外力时发生适当的塑性变形,而不容易发生断裂。