最新初二上第12章数的开方总复习
- 格式:ppt
- 大小:1.18 MB
- 文档页数:7
第十二章 数的开方复习实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实实(1)应知一、基本概念平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。
【注意】一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“”。
a 【注意】①正数a 的算术平方根的双重非负性:a ⎩⎨⎧≥≥0a 0a ②正数a 的平方根记作a±立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或三次方根)【注意】①一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
②,这说明三次根号内的负号可以移到根号外面。
33a a -=-无理数:无限不循环小数叫做无理数。
【注意】无理数归纳起来有四类:(1)开方开不尽的数,如等;32,7(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3π(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin 60o 等实数:有理数与无理数统称实数。
2、基本法则1. 实数大小比较法则:见第二章“有理数大小比较法则”(加入无理数即可)。
2. 实数运算法则:见第二章“有理数运算法则”(加入无理数即可)。
【注意】实数的大小比较和运算通常可取它们的近似值来进行。
(2)应会1. 平方根、立方根的符号表示。
2. 在数轴上的表示方法。
⋯17131052、、、、3. 实数的大小比较和运算。
(3)例题1. 把下列各数填入相应的括号内:2,0,3,∙∙21.0,1-π,1.0-,144,()013-,722,020********.0属整数的有{…}属无理数的有{…}2. 81.0的平方根是,425的算术平方根是 ,610-的立方根 是 。
3. 的相反数是( )21- A 、 B 、 C 、 D 、21+12-21--12+-4. 0.4的算术平方根是( )A 、0.2B 、±0.2C 、D 、±5105105. 在数轴上标出,写出画点的过程。
八年级数学上册第十二章知识点(共3篇)篇1:八年级数学上册第十二章知识点八年级数学上册第十二章知识点全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
⑸对应角:全等三角形中互相重合的角叫做对应角。
2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。
3.全等三角形的判定定理:⑴边边边:三边对应相等的两个三角形全等。
⑵边角边():两边和它们的夹角对应相等的两个三角形全等。
⑶角边角():两角和它们的夹边对应相等的两个三角形全等。
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。
4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等。
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。
5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证。
⑶经过分析,找出由已知推出求证的途径,写出证明过程。
数学不能只依靠上课听得懂很多初中生认为自己理解数学课就够了,但是一旦做了综合题就蒙了,基础题会做,但是会马虎。
这种问题是学生认为在课堂上就能理解的。
初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。
听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。
只有理解和练习,多练习,最后才能做的又快又准,数学成绩才会有很大进步。
第12章数的开方§12.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。
(也叫做二次方根)即:若x2=a,则x叫做a的平方根。
2、平方根的性质:(1)一个正数有两个平方根。
它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。
二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。
2、算术平方根的性质:(1)一个正数的算术平方根只有一个为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a≥0。
三、平方根和算术平方根是记号:平方根±a(读作:正负根号a);算术平方根a(读作根号a)即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。
其中a叫做被开方数。
∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。
四、开平方:求一个非负数的平方根的运算,叫做开平方。
其实质就是:已知指数和二次幂求底数的运算。
五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。
(也叫做三次方根)即:若x3=a,则x叫做a的立方根。
2、立方根的性质:(1)一个正数的立方根为正;(2)一个负数的立方根为负;(3)零的立方根是零。
3、立方根的记号:3a(读作:三次根号a),a称为被开方数,“3”称为根指数。
3a中的被开方数a的取值范围是:a为全体实数。
六、开立方:求一个数的立方根的运算,叫做开立方。
其实质就是:已知指数和三次幂求底数的运算。
七、注意事项:1、“±a ”、“a ”、“3a ”的实质意义:“±a ”→问:哪个数的平方是a ; “a ”→问:哪个非负数的平方是a ; “3a ”→问:哪个数的立方是a 。
2、注意a 和3a 中的a 的取值范围的应用。
如:若3-x 有意义,则x 取值范围是 。
八年级上册数学数的开方必修知识点
八年级上册数学数的开方必修知识点
1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的'平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:a的平方根表示为和 .注意:可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.
5.三个重要非负数: a20 ,|a|0 , 0 .注意:非负数之和为0,说明它们都是0.
6.两个重要公式:
(1) ; (a0)
(2) .
7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
9.立方根的特性: .
10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.
11.实数:有理数和无理数统称实数.
12.实数的分类:
13.数轴的性质:数轴上的点与实数一一对应.
14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:
(1)近似计算时,中间过程要多保留一位;
(2)要求记忆
【八年级上册数学数的开方必修知识点】。
初二数学知识点总结第十二章 数的开方一、平方根1、如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记为 ,读作“根号a ”,a 叫做被开方数。
2、如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
3、求一个数a 的平方根的运算,叫做开平方。
二、立方根1、如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
2、求一个数的立方根的运算,叫做开立方。
三、实数1、无限不循环小数又叫做无理数。
2、有理数和无理数统称实数。
3、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
第十三章 整式的乘除一、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
即n m n m a a a +=∙(n m ,都是正整数)二、幂的乘方法则:1、幂的乘方,底数不变,指数相乘。
即mn n m a a =)((n m ,都是正整数)2、幂的乘方法则可以逆用:即mn n m mn a a a )()(== 三、积的乘方法则:积的乘方,等于各因数乘方的积。
即nn b a ab =)((n 是正整数) 四、同底数幂的除法法则:同底数幂相除,底数不变,指数相减。
即n m n m a a a-=÷(n m a ,,0≠都是正整数,且)n m 五、零指数和负指数;1、10=a ,即任何不等于零的数的零次方等于1。
2、p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p次方的倒数。
六、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
数的开方1.平方根的定义:若x ²=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0.5.三个重要非负数: a ²≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0.6.两个重要公式:(1) ()a a 2=; (a ≥0)(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x ³=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0.13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12=732.13=236.25=.练习一、选择题。
八年级数学上册代数部分总复习八年级数学上册代数部分总复习第一部分:知识要点回顾一、重点难点归纳:重点:1、对平方根、算术平方根概念的理解和应用;2、无理数运算法则的掌握和运用;3、乘法公式的掌握和运用;4、整式的除法法则的理解和应用;难点:1、平方根、实数概念的理解;2、幂的运算法则的逆用;3、多项式乘以多项式的计算;4、灵活、恰当地将一个多项式因式分解。
二、知识要点提炼第12章数的开方(一)概念2,则叫的平分根,记做:1、平方根:;即若ax==。
ax±3,则叫的平分根,记做:2、立方根:;即若ax=3ax=。
3、算术平方根:正数a的正的,叫做的a的算术平方根,记做:a。
(二)性质1、平方根的性质:(1)一个正数有个正的平方根,它们互为;(2)0的平方根是;(3)负数平方根。
2、立方根的性质:(1)一个正数有个正的立方根;(2)一个负数有个正的立方根(3)0的立方根是。
由此可知,任意一个实数a都有一个立方根3a3、实数与上的点一一对应。
第13章整式的整除(一)概念1、因式分解:把一个多项式化为的形式,叫做把多项式因式分解。
2、公因式:一个多项式中的每一项都的因式,叫做公因式。
(二)法则1、幂的运算法则:(1)同底数幂的乘法:(2)同底数幂的除法:(3)幂的乘方:(4)积的乘方:2、单项式乘以单项式法则:3、单项式乘以多项式法则:4、多项式乘以多项式法则:5、课本中介绍的因式分解方法主要有:(三)公式1、平方差公式:2、完全平方差公式:第二部分:易错点展示1、不理解平方根、算术平方根的意义如出现:(1)666)6()2(,6)6(222±=--=-=-±)(或等错误2、混淆平方根、立方根的意义如出现“64的立方根是27,"4-±没有立方根”等错误;3、无理数的概念不清如出现:“22是分数”,“带根号的数是无理数”,“无理数是开方开不尽的数”等错误。