数控机床电气控制与PLC12.数控机床PLC编程实例:数控机床辅助功能PMC编程
- 格式:ppt
- 大小:533.50 KB
- 文档页数:10
数控机床中的PLC编程步骤————————————————————————————————作者:————————————————————————————————日期:数控机床中的PLC编程步骤数控机床的plc提供了完整的编程语言,利用编程语言,按照不同的控制要求可编制不同的控制程序。
梯形图方法是现在使用最广泛的编程方法,在形式上类似于继电器控制电路图,简单、直观、易读、好懂。
数控机床中的plc编程步骤如下:(1)确定控制对象;(2)制作输入和输出信号电路原理图、地址表和PLC数据表;(3)在分析数控机床工作原理或动作顺序的基础上,用流程图、时序图等描述信号与机床运动之间的逻辑顺序关系,设计制作梯形图;(4)把梯形图转换成指令表的格式,然后用编程器键盘写入顺序程序,接下来用仿真装置或模拟台进行调试、修改;(5)将经过反复调试并确认无误的顺序程序固化到EPROM中,并将程序存人软盘或光盘,同时整理出有关图纸及维修所需资料。
表1中所列为FANUC系列梯形图的图形符号。
下面以数控机床主轴定向控制为例说明PLC在数控机床上的应用。
在数控机床进行加工时,自动交换刀具或精镗孔都要用到主轴定向功能。
图1所示为主轴定向功能的PLC控制梯形图。
图1 数控机床主轴定向控制梯形图梯形图1中AUTO为自动工作状态信号,手动时AUTO为“0”,自动时为“1”。
M06是换刀指令,M19是主轴定向指令,这两个信号并联作主轴定向控制的控制信号。
RST为CNC系统的复位信号。
ORCM为主轴定向继电器。
ORAR为从机床输入的定向到位信号。
另外,这里还设置了定时器TMR功能,来检测主轴定向是否在规定时间内完成。
通过手动数据输入(MDI)面板在监视器上设定4.5秒的延时数据,并存储在第203号数据存储单元。
当在4.5秒内不能完成定向控制时,将发出报警信号。
Rl为报警继电器。
图中的梯形图符号边的数据表示PLC内部存储器的单元地址,如200.7表示数据存储器中第200号存储单元的第7位,这些地址可由PLC程序编制人员根据需要来指定。
机床数控系统的PLC及编程1、数控机床PLC1.1数控机床PLC的控制对象数控机床的控制可分为坐标轴运动的位置控制和数控机床加工过程的顺序控制两大部分。
在讨论机床各部件的关系时,通常把CNC系统的软硬件及其外部连接设备称为NC侧;把机床机械部分和操作面板及各种线路称为MT侧。
1.2PLC的信号处理(1)CNC装置至机床CNC的输出数据经PLC逻辑处理,通过I/O传送至机床侧。
M、S、T等功能代码是CNC输出的主要信息。
PLC向机床侧传递的信息主要是控制机床的执行组件以及确保机床各运动部件状态的信号和故障指示等。
(2)机床至CNC装置从机床侧输入的开关量经PLC逻辑处理传送到CNC装置中。
机床操作面板上各开关、按钮等状态是机床侧传递给PLC的主要信息。
2、PLC在数控机床中的典型应用2.1模拟主轴控制伺服调速系统和变频调速系统是数控机床主轴无极变速的两种主要类型。
对调速性能要求不太高的数控机床中,变频调速因其具有较好的经济性得到广泛的应用。
目前主流数控系统为配用变频调速功能除提供串行数字主轴接口外,还保留了模拟主轴接口或设置10V电压模拟接口。
下面以三菱E60数控系统为例介绍驱动普通异步电动机实现机床主轴无极变速的方法。
(1)三菱E60数控系统为实现模拟主轴功能,三菱E60数控系统配置FCU6-HR341或远程接口DXl20的I/O单元。
实现了提供模拟主轴输出接口和1OV模拟电压的目的,模拟信号可以通过插头A0输出。
三菱E60数控系统的模拟电压输出是通过将带符号的二进制数据设定到文件寄存器R100-R103中并使模拟电压通过A0输出到外部来实现的。
图2.1 寄存器内容与模拟电压的关系由图2.1可以得到:若文件寄存器中数据值为U,则输出电压为U/409.5。
(2)主轴命令值数据流三菱E60数控系统的主轴速度控制S指令由6位代码组成。
a.主轴S命令发出时输出S功能选通信号SFI和S 代码R28、R29。
PLC技术在数控机床电气控制系统中的应用PLC技术(Programmable Logic Controller)是一种专门用于工业自动化控制的计算机控制系统。
它由中央处理器、存储器、输入/输出模块和通信模块等组成,可通过编程和配置来实现对不同设备、机器和流程的自动化控制。
在数控机床电气控制系统中,PLC技术的应用不仅能提高机床的性能和精度,还能提高生产效率和降低成本。
PLC技术在数控机床电气控制系统中的最基本应用是对机床的启动、停止和紧急停止进行控制。
通过编写程序,PLC可以准确地控制机床的启动和停止时机,确保机床在正常工作状态下进行操作。
PLC还可以监测机床的紧急停止信号,一旦发生紧急情况,PLC可以快速断开机床的电源,以保护人员和设备的安全。
PLC技术在数控机床电气控制系统中的另一个重要应用是对运动控制进行精确控制。
数控机床的运动控制通常涉及轴的运动、位置的控制和速度的调节等方面。
PLC可以通过编写运动控制程序,实现对不同轴的运动控制,包括直线轴和旋转轴。
通过PLC的精确控制,可以实现机床的高精度加工,并且可以根据不同的工件和加工要求,在程序中进行调整。
PLC还可以监测和控制机床的位置,实现定位控制和位置反馈。
PLC技术还可以应用于机床的自动化控制和生产过程的优化。
通过编写自动化控制程序,PLC可以实现对机床的全自动化操作。
PLC可以根据传感器的反馈信号来自动调整机床的刀具,实现工件的加工。
PLC还可以监测工件的尺寸和质量,根据预设的标准进行自动判别和分类。
通过自动化控制,可以大大提高机床的生产效率和稳定性,减少人工操作的错误和疏忽。
PLC技术还可以应用于数控机床电气控制系统的通信和数据采集。
通过配置通信模块,PLC可以和上位机、下位机和其他设备进行数据的交换和通信。
PLC可以接收上位机的指令和参数,实现远程控制和监控。
PLC还可以采集各种传感器和仪表的数据,如温度、压力和负载等,以便监测和调节机床的工作状态。
PLC技术在数控机床电气控制系统中的应用
PLC(可编程逻辑控制器)技术是一种广泛应用在数控机床电气控制系统中的技术。
它是一种通过使用可编程逻辑控制器进行自动化控制的技术。
PLC技术在数控机床电气控制
系统中起到了非常关键的作用,下面将着重介绍PLC技术在数控机床电气控制系统中的应用。
PLC技术可以用于数控机床的整体控制系统。
通过使用PLC技术,可以实现数控机床
的各个组成部分之间的整体控制和协调。
可以使用PLC技术控制数控机床的主轴、进给轴、刀具换刀等操作。
通过PLC技术,可以实现数控机床的自动化控制,提高生产效率。
PLC技术还可以用于监控数控机床的工作过程。
可以通过PLC技术实时监测数控机床
的工作状态,包括主轴运转状态、进给轴运动状态、刀具磨损程度等。
通过监控数控机床
的工作过程,可以及时发现并解决一些问题,确保数控机床的正常运行。
PLC技术还可以用于数控机床的故障检测和诊断。
通过PLC技术可以对数控机床的故
障进行自动检测和诊断。
当数控机床出现故障时,PLC可以通过监控各个传感器的状态来
判断故障原因,并做出相应的处理。
通过PLC技术,可以提高故障检测和诊断的准确性和
效率,减少停机时间。
PLC技术在数控机床电气控制系统中的应用随着工业自动化技术的逐步发展,PLC(可编程逻辑控制器)技术在数控机床电气控制系统中的应用越来越广泛,逐渐代替传统的硬连线控制方式。
PLC具有编程方便、可靠性高、较强的抗干扰能力和较好的可维护性等优点,因此在数控机床控制系统中得到广泛应用。
1. 急停控制:PLC可以很好地实现急停控制,通过编程在一个关闭电路中设置一个急停按键。
当操作人员按下急停按键时,PLC控制信号输出使控制电路中的关键部件失去电源,从而使机床停止工作。
2. 位置控制:PLC可以实现数控机床的自动位置控制。
在加工过程中,PLC根据加工程序的指令自动调整工具或工件的位置。
另外,通过与数控系统配合,PLC还可以实现自适应控制,保证加工的精度和稳定性。
3. 传感器信号处理:PLC可以接收和处理数控机床传感器的信号,并进行判断和控制。
例如,当传感器检测到工件到达某个位置时,PLC可以根据程序判断进行下一个动作。
4. 总线控制:PLC可以实现与其他设备进行通信,如与数控系统、伺服系统等设备进行数据的传输和共享。
同时也可以进行多点控制,实现集中管理。
5. 变频调速:PLC可以实现数控机床电机的变频调速控制,通过调整电机的转速以控制工件的加工速度和进给速度,提高了加工精度和效率。
1. 编程简单:PLC编程不需要太多的代码,也不需要掌握复杂的程序设计语言。
只需要掌握一些简单的指令即可,因此降低了编程难度和学习成本。
2. 可靠性高:PLC具有较高的稳定性和可靠性。
硬件经过严格的测试和检验,能够适应各种复杂的工作环境。
同时,PLC系统还具有自检功能,当系统出现故障时能够自我诊断并进行报警。
3. 抗干扰能力较强:PLC可靠地工作在恶劣的环境下,具有很强的抗干扰能力。
它能够通过编程来限制干扰的幅度和频率,保证了系统的稳定性和可靠性。
4. 可维护性好:PLC系统可以进行在线监控,通过软件诊断和调试功能,快速找到故障点并进行修复。
PLC技术在数控机床电气控制系统中的应用PLC(可编程逻辑控制器)技术在数控机床电气控制系统中的应用已经成为现代数控机床控制的一种常见方式。
PLC技术通过可编程的逻辑控制器,实现了对数控机床的精确控制和高效运行。
PLC技术能够提供可编程的逻辑功能。
传统的数控机床通常使用固定的逻辑电路来实现控制功能,这样很难根据不同的工件加工要求进行灵活调整。
而PLC技术可以根据实际需要对逻辑进行编程,实现对数控机床各种功能的灵活控制。
可以编写程序来控制数控机床的进给速度、加工深度等参数,以适应不同工件的加工要求。
PLC技术能够提供高可靠性和稳定性。
由于数控机床的工作环境复杂,需要承受较大的振动和电磁干扰。
传统的逻辑电路很容易受到外界干扰而导致故障,而PLC技术采用了数字化的控制方式,可以更好地抵抗外界干扰,提高数控机床的可靠性和稳定性。
PLC技术还可以集成数控机床的各个控制模块,实现对整个机床的统一控制。
传统的数控机床通常需要使用不同的控制设备,而PLC技术可以通过编写程序,将不同的控制模块集成在一个PLC中,实现对整个机床的统一控制,简化了系统架构,提高了系统的整合性和可扩展性。
PLC技术还可以实现机床状态的监测和故障诊断。
通过对PLC进行编程,可以实时监测数控机床的运行状态,如温度、压力、位置等参数,及时发现异常情况。
PLC还可以进行故障诊断,对机床进行自动报警和排除故障,提高了数控机床的故障处理能力和可靠性。
PLC技术在数控机床电气控制系统中的应用具有重要的意义。
它能够通过可编程的逻辑控制,实现对数控机床的灵活控制;通过数字化的控制方式,提高数控机床的可靠性和稳定性;通过统一控制系统的集成,简化系统架构,提高系统整合性和可扩展性;通过状态监测和故障诊断,提高机床的可靠性和故障处理能力。
PLC技术已经成为现代数控机床控制的重要手段。
《数控机床操作与编程》实例数控机床是一种具有高精度、高效率和高稳定性的机床,广泛应用于各种机械加工行业。
通过编程控制机床的运动轨迹和速度,可以实现复杂的零件加工。
下面将介绍几个数控机床操作与编程的实例。
实例一:二维轮廓加工在数控机床上进行二维轮廓加工时,通常需要先进行编程,然后再将程序加载到机床上进行加工。
1.编程以绘制一个圆形的实例来进行说明,假设需要加工直径为100mm的圆形。
首先需要确定圆心坐标和半径。
假设圆心坐标为(X0,Y0),半径为R。
编程过程如下:N10G90G54G0X0Y0;G90表示绝对编程方式,G54指定工件坐标系,G0快速定位N20 G01 Z0.5 F100 ;G01线性插补指令,Z0.5表示下刀深度为0.5mm,F100表示给进速度N30G02X0Y0R;G02圆弧插补指令,X0Y0表示结束点的坐标,R表示半径,顺时针方向N40G00Z10;G00快速提刀N50M30;程序结束2.机床操作将编写好的程序保存到U盘或者其它存储设备上,插入到数控机床的USB接口或者其它相关接口上。
然后按照机床操作手册的要求,加载程序到机床上。
实例二:三维曲面加工在数控机床上进行三维曲面加工时,通常需要先进行编程,然后再将程序加载到机床上进行加工。
1.编程假设需要加工一个球形零件,球心坐标为(X0,Y0,Z0),半径为R。
编程过程如下:N10G90G54G0X0Y0Z0;G90表示绝对编程方式,G54指定工件坐标系,G0快速定位N20 G01 Z0.5 F100 ;G01线性插补指令,Z0.5表示下刀深度为0.5mm,F100表示给进速度N30G03X0Y0Z0R;G03圆弧插补指令,X0Y0Z0表示终点坐标,R表示半径,顺时针方向N40G00Z10;G00快速提刀N50M30;程序结束2.机床操作将编写好的程序保存到U盘或者其它存储设备上,插入到数控机床的USB接口或者其它相关接口上。
然后按照机床操作手册的要求,加载程序到机床上。