模拟退火算法的教程讲解
- 格式:ppt
- 大小:647.00 KB
- 文档页数:54
解析模拟退火算法一.爬山算法(Hill Climbing)介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
二.模拟退火(SA,Simulated Annealing)思想爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
模拟退火算法描述:若J(Y(i+1))>=J(Y(i))(即移动后得到更优解),则总是接受该移动若J(Y(i+1))<J(Y(i))(即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE)=exp(dE/(kT))其中k是一个常数,exp表示自然指数,且dE<0。
这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。
又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。
随着温度T的降低,P(dE)会逐渐降低。
使用matlab实现模拟退火算法标题:使用MATLAB实现模拟退火算法:优化问题的全局搜索方法引言:模拟退火算法(Simulated Annealing)是一种经典的全局优化算法,常用于解决各种实际问题,如组合优化、参数优化、图形分割等。
本文将详细介绍如何使用MATLAB实现模拟退火算法,并介绍其原理、步骤以及代码实现。
1. 模拟退火算法简介模拟退火算法借鉴了金属退火的物理过程,在解空间中进行随机搜索,用于找到全局最优解。
其核心思想是通过接受一定概率的劣解,避免陷入局部极小值,从而实现全局优化。
2. 模拟退火算法步骤2.1 初始参数设置在使用MATLAB实现模拟退火算法之前,我们需要配置一些初始参数,包括起始温度、终止温度、温度衰减系数等。
这些参数的合理设定对算法的效果至关重要。
2.2 初始解的生成在模拟退火算法中,我们需要随机生成一个初始解,作为搜索的起点。
这个初始解可以是随机生成的,也可以是根据问题本身的特性生成的。
2.3 判定条件模拟退火算法需要一个判定条件来决定是否接受新解。
通常我们使用目标函数值的差异来评估新解的优劣。
如果新解更优,则接受;否则,按照一定概率接受。
2.4 温度更新模拟退火算法中最重要的一步是对温度的更新。
温度越高,接受劣解的概率就越大,随着迭代的进行,温度逐渐降低,最终达到终止温度。
2.5 迭代过程在每次迭代中,我们通过随机生成邻近解,计算其目标函数值,并根据判定条件决定是否接受。
同时,根据温度更新的规则调整温度。
迭代过程中,不断更新当前的最优解。
3. MATLAB实现模拟退火算法在MATLAB中,我们可以通过编写函数或使用内置函数来实现模拟退火算法。
具体的实现方法取决于问题的复杂度和求解的要求。
我们需要确保代码的可读性和可复用性。
4. 示例案例:TSP问题求解为了演示模拟退火算法的实际应用,我们将以旅行商问题(Traveling Salesman Problem,TSP)为例进行求解。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t 值时的迭代次数L 和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T 值的迭代次数L(2) 对k=1,……,L 做第(3)至第6 步:(3)产生新解S′(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7)T 逐渐减少,且T->0,然后转第2 步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
一. 爬山算法( Hill Climbing )' b2 m3 p" g. ]! u9 a* }2 ~' o% p$ l1 [8 n. D, q0 |" C介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
. K3 \$ @$ a$ V' {& \! k- c- m* U8 l8 J, R) j' a 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
8 V: I9 Q7 h5 @3 j' K, s1 J& ^ H9 y4 ~3 M) {9 C/ D* Y# {0 E$ a$ }二. 模拟退火(SA,Simulated Annealing)思想$ Q$ Q: y7 N0 q9 w7 S$ M6 u% |- G) A" \) P1 V 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
7 `4 V! }4 U0 t1 h9 k0 ]) F* \4 S2 S' ]/ O7 d( e: }* W/ o) N0 v 模拟退火算法描述:! `. j) x$ t6 o' v7 S, O$ V3 ~' R1 f2 H% k$ |& n若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动. f6 S. R3 ?' ^ e! `/ c) E% J1 c" ^' m5 c若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)% }1 M# [8 }" Q* R+ ~7 O6 N8 W( L8 N8 k这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
⼿把⼿教会你模拟退⽕算法 今天终于⽤模拟退⽕过了⼀道题:CodeVS: P1344。
有 N ( <=20 ) 台 PC 放在机房内,现在要求由你选定⼀台 PC,⽤共 N-1 条⽹线从这台机器开始⼀台接⼀台地依次连接他们,最后接到哪个以及连接的顺序也是由你选定的,为了节省材料,⽹线都拉直。
求最少需要⼀次性购买多长的⽹线。
(说⽩了,就是找出 N 的⼀个排列 P1 P2 P3 ..PN 然后 P1 -> P2 -> P3 -> ... -> PN 找出 |P1P2|+|P2P3|+...+|PN-1PN| 长度的最⼩值) 这种问题被称为最优组合问题。
传统的动态规划算法O(n22n)在n = 20的情况下空间、时间、精度都不能满⾜了。
这时应该使⽤⽐较另类的算法。
随机化算法在n⽐较⼩的最优化问题表现较好,我们尝试使⽤随机化算法。
1 #include<cstdio>2 #include<cstdlib>3 #include<ctime>4 #include<cmath>5 #include<algorithm>67const int maxn = 21;8double x[maxn], y[maxn];9double dist[maxn][maxn];10int path[maxn];11int n;12double path_dist(){13double ans = 0;14for(int i = 1; i < n; i++) {15 ans += dist[path[i - 1]][path[i]];16 }17return ans;18 }19int main(){20 srand(19260817U); // 使⽤确定的种⼦初始化随机函数是不错的选择21 scanf("%d", &n);22for(int i = 0; i < n; i++) scanf("%lf%lf", x + i, y + i);23for(int i = 0; i < n; i++) for(int j = i + 1; j < n; j++) dist[i][j] = dist[j][i] = hypot(x[i] - x[j], y[i] - y[j]);2425for(int i = 0; i < n; i++) path[i] = i; // 获取初始排列26double ans = path_dist(); // 初始答案27int T = 30000000 / n; // 单次计算的复杂度是O(n),这⾥的30000000是试出来的28while(T--){29 std::random_shuffle(path, path + n); // 随机打乱排列30 ans = std::min(ans, path_dist()); // 更新最⼩值31 }32 printf("%.2lf", ans);33 } 可惜的是,这个算法只能拿50分。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退⽕算法⼀、模拟退⽕ 模拟物理的⾦属退⽕,使某⼀个状态慢慢趋于稳定,与爬⼭算法相类似的⼀类求解近似解的问题。
⼆、算法⾥的公式 若迭代出的解⼀定优于当前解,则当前解被覆盖。
⽽当迭代的解不优于当前解得时候,我们⽤⼀个概率去接受它。
e^df/kT k为常数,编程中常常设置为1 T为温度 e为指数函数 df为负数,因为如果概率要保证0<e^df/kT < 1,那么df必定要为负数 T下降的系数为0.993-0.998三、代码模板1 #include "bits/stdc++.h"2using namespace std;3double n;4const double eps = 1e-14;5double T = 20000;6double dT = 0.985;7double k = 1;8double dx,dy;9double x,y;10double func(double z)11 {12return fabs(z * z - n);13 }14void SA()15 {16 srand(time(NULL));17 x = 0;18 y = func(x);19while(T > eps){20//随机偏移量21 dx = x + (rand() * 2 - RAND_MAX) * T;22while(dx < 0)23 dx = x + (rand() * 2 - RAND_MAX) * T;24 dy = func(dx);25if(dy < y)26 x = dx,y = dy;27//⼀定概率去接收⽬前较⼩的答案28else if(exp((y - dy) / (k * T)) * RAND_MAX > rand())29 x = dx,y = dy;30 T *= dT;31 }32 }33int main()34 {35 cin >> n;36 SA();37 cout << fixed << setprecision(14) << x;38return0;39 }。
模拟退⽕算法超详细教程,请收好!预计读完 5 分钟今天,⼩编将带⼤家学习⼀个经典算法——模拟退⽕算法。
前排提醒,本⽂全程⼲货,建议收藏。
以下为本⽂框架:⼀、什么是模拟退⽕算法?模拟退⽕算法(simulated annealing,SA)来源于固体退⽕原理,是⼀种基于概率的算法。
算法思想为:先从⼀个较⾼的初始温度出发,逐渐降低温度,直到温度降低到满⾜热平衡条件为⽌。
在每个温度下,进⾏n轮搜索,每轮搜索时对旧解添加随机扰动⽣成新解,并按⼀定规则接受新解。
打个⽐⽅:有⼀只兔⼦在⼭上,要去⼭脚下,但它喝醉了。
于是它就胡乱瞎蹦跶,有可能直接蹦跶到⼭脚下,有可能蹦跶到更⾼的另⼀座⼭,也可能跳到某个⼭⾕⾥。
等它醒酒后,它就慢慢地往低处⾛。
这就是模拟退⽕。
为更好理解模拟退⽕算法的具体步骤,我们来举个栗⼦。
假设初始温度为1000℃,温度衰减系数α = 0.98,热平衡条件为温度⼩于T℃。
模拟退⽕算法本质是双层循环,外层循环(上图左侧彩⾊模块)控制温度由⾼向低变化,温度计算公式,为取值在[0, 1]上的温度衰减系数,如0.95;内层循环(上图右侧⿊⾊模块)中,温度固定,对旧解添加随机扰动得到新解,并按⼀定规则接受新解。
内层循环的迭代次数称为马尔科夫链长度,如上图中的马尔科夫链的长度为1000.⼆、模拟退⽕算法有什么优点?模拟退⽕算法的优点在于:不管函数形式多复杂,模拟退⽕算法更有可能找到全局最优解。
举个栗⼦:寻找⽬标函数f = x + 10 sin(3x) + cos(x) 在[0, 9]范围内的最⼩值。
从函数图像可以看到,该函数在[0, 9]范围内有多个“坑”,也就是局部最⼩值,全局最⼩值位于[1, 2]范围上的“坑”内。
如果⽤梯度下降法来求解全局最⼩值,若学习率设置得不合理很容易掉进某个坑内出不来,⽐如这样↓⽽模拟退⽕算法相对来说不会那么容易陷⼊局部最优解。
我们把模拟退⽕算法求出的解看成是⼀个红⾊的⼩球,可以看到,随着温度的下降,这个⼩球⼀直反复横跳;直到温度较低时,这个⼩球才在最⼩值附近稳定下来。
模拟退火算法(Simulated Annealing)主要内容◆算法原理◆算法应用◆作业现代智能优化算法,主要用于求解较为复杂的优化问题。
与确定性算法相比,其特点如下:第一,目标函数与约束函数不需要连续、可微,只需提供计算点处的函数值即可;第二,约束变量可取离散值;第三,通常情况下,这些算法能求得全局最优解。
现代智能优化算法,包括禁忌搜索,模拟退火、遗传算法等,这些算法涉及生物进化、人工智能、数学和物理学、神经系统和统计力学等概念,都是以一定的直观基础构造的算法,统称为启发式算法。
启发式算法的兴起,与计算复杂性理论的形成有密切的联系,当人们不满足常规算法求解复杂问题时,现代智能优化算法开始起作用。
现代智能优化算法,自20世纪80年代初兴起,至今发展迅速,其与人工智能、计算机科学和运筹学融合,促进了复杂优化问题的分析和解决。
模拟退火算法(Simulated Annealing, SA)是一种通用的随机搜索算法,是局部搜索算法的扩展。
最早于1953年由Metropolis提出,K irkpatric等在1983年将其成功用于组合优化问题的求解。
算法的目的:解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。
一、算法原理启发:物质总是趋于最低的能态。
如:水往低处流;电子向最低能级的轨道排布。
结论:最低能态是最稳定的状态。
物质会“自动”地趋于最低能态。
猜想:物质趋于最低能态与优化问题求最小值之间有相似性,能否设计一种用于求函数最小值的算法,就像物质“自动”地趋于最低能态?退火,俗称固体降温。
先把固体加热至足够高的温度,使固体中所有的粒子处于无序的状态(随机排列,此时具有最高的熵值);然后将温度缓缓降低,固体冷却,粒子渐渐有序(熵值下降,以低能状态排列)。
原则上,只要温度上升得足够高,冷却过程足够慢,则所有粒子最终会处于最低能态(此时具有最低的熵值)。
模拟退火算法就是将退火过程中系统熵值类比为优化问题的目标函数值来达到优化问题寻优的一种算法。