模拟退火算法详解1
- 格式:pptx
- 大小:459.93 KB
- 文档页数:51
模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。
它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。
本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。
一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。
在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。
类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。
二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。
2. 选择邻域解:根据当前解生成邻域解。
3. 接受准则:根据一定概率接受邻域解,更新当前解。
4. 降温策略:根据降温策略逐渐降低温度。
5. 终止条件:达到终止条件时停止搜索,输出最优解。
三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。
下面以组合优化问题为例,介绍模拟退火算法的具体应用。
1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。
模拟退火算法可以通过不断调整路径来寻找最优解。
2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。
模拟退火算法可以优化排课方案,使得课程安排更加合理。
3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。
模拟退火算法可以帮助优化装箱方案,减少空间浪费。
四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。
通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。
在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。
模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。
下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。
开始时,所有元素都处于最高能量状态。
我们的目标是找到最低能量的状态,即最优解。
模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。
在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。
2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。
3. 随着温度的降低,算法开始更多地考虑能量的减少。
如果一个状态比前一个状态的能量更低,那么它一定会被接受。
但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。
这个概率随着温度的降低而减小。
4. 重复上述过程,直到达到终止温度。
这时,算法已经找到了最低能量的状态。
模拟退火算法可以找到全局最优解,而不是局部最优解。
这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。
以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t 值时的迭代次数L 和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T 值的迭代次数L(2) 对k=1,……,L 做第(3)至第6 步:(3)产生新解S′(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7)T 逐渐减少,且T->0,然后转第2 步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。
它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。
首先,模拟退火算法需要生成一个初始解。
初始解是随机生成的,它代表了问题的一个可能解。
初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。
然后,算法需要定义一个邻域结构来解空间。
邻域结构定义了问题的解的相邻解之间的关系。
在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。
在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。
接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。
如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。
这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。
在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。
温度参数的降低速率决定了算法的接受较差解的概率的减小速率。
温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。
总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。
它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。
但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。
模拟退火算法介绍解析模拟退火算法一.爬山算法(Hill Climbing)介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
二.模拟退火(SA,Simulated Annealing)思想爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
模拟退火算法描述:若J(Y(i+1))>=J(Y(i))(即移动后得到更优解),则总是接受该移动若J(Y(i+1))<J(Y(i))(即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE)=exp(dE/(kT))其中k是一个常数,exp表示自然指数,且dE<0。
这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。
又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。
一. 爬山算法( Hill Climbing )' b2 m3 p" g. ]! u9 a* }2 ~' o% p$ l1 [8 n. D, q0 |" C介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
. K3 \$ @$ a$ V' {& \! k- c- m* U8 l8 J, R) j' a 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
8 V: I9 Q7 h5 @3 j' K, s1 J& ^ H9 y4 ~3 M) {9 C/ D* Y# {0 E$ a$ }二. 模拟退火(SA,Simulated Annealing)思想$ Q$ Q: y7 N0 q9 w7 S$ M6 u% |- G) A" \) P1 V 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
7 `4 V! }4 U0 t1 h9 k0 ]) F* \4 S2 S' ]/ O7 d( e: }* W/ o) N0 v 模拟退火算法描述:! `. j) x$ t6 o' v7 S, O$ V3 ~' R1 f2 H% k$ |& n若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动. f6 S. R3 ?' ^ e! `/ c) E% J1 c" ^' m5 c若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)% }1 M# [8 }" Q* R+ ~7 O6 N8 W( L8 N8 k这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法讲义1.基本思想2.算法流程(1)初始化初始解,设为当前解;(2)设置初温T和下降速度参数α;(3)在当前温度下进行随机邻域,寻找更好的解;(4)每次得到新解后,计算其目标函数值与当前解的目标函数值之差ΔE;(5)若ΔE小于等于0,或满足一定的概率条件P(ΔE,T),则接受新解作为当前解;(6)降低温度,即T=T*α;(7)若满足停止条件,则算法终止,否则回到步骤(3);(8)输出当前解作为最优解。
3.关键问题(1)初始温度的选择:初始温度过高可能导致无法跳出局部最优解,而初始温度过低可能导致无法找到全局最优解。
一种常用的方法是通过多次试验来确定初始温度,使其能够在相对较短的时间内找到一个较优解。
(2)温度下降速度的选择:温度下降速度决定了算法的收敛速度,过快的下降速度会导致陷入局部最优解,而过慢的下降速度则会使算法收敛速度过慢。
通常可以通过实验来确定一个适合的下降速度参数α。
(3)邻域算子的选择:邻域算子是指在当前解的邻域内进行,从而寻找更好的解。
常见的邻域算子有随机扰动法、交换相邻解法等。
具体选择哪种算子需要根据具体问题的特点来确定。
4.算法优缺点(1)算法具有较好的全局能力,能够跳出局部最优解,具有一定的随机性;(2)算法易于实现,并且没有太多的问题依赖,适用于各种类型的问题;(3)由于算法采用随机策略,所以有一定的概率陷入局部最优解,需要调节参数来平衡全局和局部的能力。
总结起来,模拟退火算法是一种基于随机的启发式算法,通过温度的不断降低来达到在解空间中全局最优解的目的。
虽然算法具有较好的全局能力,但在实际应用中还需要根据具体问题的特点来选择合适的参数和邻域算子,以取得较好的效果。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火遗传算法模拟退火遗传算法是一种结合了模拟退火算法和遗传算法的优化算法。
它通过模拟物理退火过程和基因遗传进化过程,来寻找最优解。
在实际应用中,它被广泛应用于组合优化、函数优化、图像处理等领域。
一、模拟退火算法1.1 原理模拟退火算法是一种基于概率的全局寻优方法。
其原理是通过随机选择一个解,并以一定的概率接受该解或者以较小的概率接受劣解,从而达到全局最优解。
1.2 步骤(1)初始化初始温度T0和初始解x0;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的解x';(3)计算新旧两个解之间的差异ΔE,并根据Metropolis准则决定是否接受新解;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
1.3 优缺点优点:可以跳出局部最优,具有全局搜索能力;易于实现;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;需要调节参数。
二、遗传算法2.1 原理遗传算法是一种基于生物进化思想的优化算法。
其原理是通过模拟自然界中的进化过程,将问题转换为一个个个体,通过交叉、变异等操作来产生新的个体,并筛选出适应度高的个体,从而达到全局最优解。
2.2 步骤(1)初始化种群;(2)计算每个个体的适应度;(3)根据适应度选择优秀的个体进行交叉和变异操作;(4)重复步骤(2)到(3),直至达到停止条件。
2.3 优缺点优点:能够跳出局部最优,具有全局搜索能力;易于并行化处理;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;容易陷入早熟现象。
三、模拟退火遗传算法3.1 原理模拟退火遗传算法是将模拟退火和遗传算法结合起来使用。
其原理是在模拟退火过程中引入了交叉和变异操作,从而增加了搜索空间,并提高了搜索效率。
3.2 步骤(1)初始化初始温度T0和初始种群;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的种群;(3)计算新旧两个种群之间的差异,并根据适应度选择优秀的个体进行交叉和变异操作;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
模拟退⽕算法⼀、模拟退⽕ 模拟物理的⾦属退⽕,使某⼀个状态慢慢趋于稳定,与爬⼭算法相类似的⼀类求解近似解的问题。
⼆、算法⾥的公式 若迭代出的解⼀定优于当前解,则当前解被覆盖。
⽽当迭代的解不优于当前解得时候,我们⽤⼀个概率去接受它。
e^df/kT k为常数,编程中常常设置为1 T为温度 e为指数函数 df为负数,因为如果概率要保证0<e^df/kT < 1,那么df必定要为负数 T下降的系数为0.993-0.998三、代码模板1 #include "bits/stdc++.h"2using namespace std;3double n;4const double eps = 1e-14;5double T = 20000;6double dT = 0.985;7double k = 1;8double dx,dy;9double x,y;10double func(double z)11 {12return fabs(z * z - n);13 }14void SA()15 {16 srand(time(NULL));17 x = 0;18 y = func(x);19while(T > eps){20//随机偏移量21 dx = x + (rand() * 2 - RAND_MAX) * T;22while(dx < 0)23 dx = x + (rand() * 2 - RAND_MAX) * T;24 dy = func(dx);25if(dy < y)26 x = dx,y = dy;27//⼀定概率去接收⽬前较⼩的答案28else if(exp((y - dy) / (k * T)) * RAND_MAX > rand())29 x = dx,y = dy;30 T *= dT;31 }32 }33int main()34 {35 cin >> n;36 SA();37 cout << fixed << setprecision(14) << x;38return0;39 }。
模拟退⽕算法(SimulateAnneal,SA)求全局最⼩点。
每次随机出⼀个新解。
如果这个解更优,则采纳它;否则以⼀定概率采纳它。
设这个新的解与上⼀个解的差为ΔE,温度为T,k 为⼀个随机数,离⼦趋于平衡的概率(即可采纳的概率)为:P k=e−ΔE kT可见,ΔE/kT越⼩,温度T越⾼(此时的迭代次数越少),k越⼤(⼈⼯设置,影响较差解的采纳概率),ΔE越⼩(这个较差解与上⼀个解的差越⼩),被采纳的概率也就越⼤。
ΔE<0,新解更⼩,采纳它;否则,从(0,1)中随机⼀个数R,若R<P k,则采纳它。
(这个图是求最⼤)求函数在[0,9]之间的最⼤值:import mathimport randomdef y(x): # 函数y即能量Ereturn x + 10 * math.sin(5 * x) + 7 * math.cos(4 * x)def is_acceptable(delta_E,tmp,k=1): # 是否可采纳if delta_E<0: # ΔE<0,直接采纳return Truep=math.exp(-delta_E/(k*tmp)) # 求概率if random.random()<p:return Trueelse:return Falseleft = 0 # 左边界right = 9 # 右边界tmp = math.e**5 # 初始温度tmp_min = math.e**-3 # 停⽌温度alpha = 0.98 # 降温系数x_old = left + random.random() * (right-left) # ⽣成初始随机解E_old = y(x_old)counter = 0 # ⽣成更差解的次数while tmp > tmp_min:t = (random.random() - 0.5) * 3 # ⽣成随机解x_new= x_old + tif x_new<left or x_new>right:x_new = x_new - 2*tE_new = y(x_new)delta_E = -(E_new - E_old)if is_acceptable(delta_E,tmp): # 可采纳x_old = x_newE_old = E_newif delta_E<0: # ΔE<0,⽣成更优解,降温tmp = tmp * alphaelse:counter += 1if counter > 10000:breakprint('y(' + str(x_old) + ') = ' + str(E_old))TSP问题:import mathimport random#############################################def get_all_dist(): # 每两个城市间的距离for i in range(len(cities)):for j in range(i,len(cities)):d[(i,j)] = d[(j,i)] = math.sqrt((cities[i][0]-cities[j][0])**2 + (cities[i][1]-cities[j][1])**2)def create_new_route(a): # 产⽣新路径i = random.randint(0,len(a)-1)j = random.randint(0,len(a)-1)a[i],a[j] = a[j],a[i]def get_route_dist(a): # 路径长度即能量Edist = 0for i in range(len(a)-1):dist += d[(a[i],a[i+1])]return distdef is_acceptable(delta_E,tmp,k=1): # 是否可采纳if delta_E<0: # ΔE<0,直接采纳return Truep=math.exp(-delta_E/(k*tmp)) # 求概率if random.random()<p:return Trueelse:return False############################################## 城市坐标cities = [[1304,2312],[3639,1315],[4177,2244],[3712,1399],[3488,1535],[3326,1556],[3238,1229],[4196,1004],[4312,790],[4386,570], [3007,1970],[2562,1756],[2788,1491],[2381,1676],[1332,695],[3715,1678],[3918,2179],[4061,2370],[3780,2212],[3676,2578],[4029,2838], [4263,2931],[3429,1908],[3507,2367],[3394,2643],[3439,3201],[2935,3240],[3140,3550],[2545,2357],[2778,2826],[2370,2975]]d = dict() # 每两个城市间的距离get_all_dist()route_old = list(range(len(cities))) # 初始路径E_old = get_route_dist(route_old) # 初始路径长度tmp = math.exp(3) # 初始温度tmp_min = math.exp(-8) # 停⽌温度alpha = 0.98 # 降温系数counter = 0 # ⽣成更差解的次数#############################################while tmp > tmp_min:route_new = route_oldcreate_new_route(route_new) # ⽣成随机解 E_new = get_route_dist(route_new)delta_E = E_new - E_oldif is_acceptable(delta_E,tmp): # 可采纳route_old = route_newE_old = E_newif delta_E<0: # ΔE<0,⽣成更优解,降温 tmp = tmp * alphaelse:counter += 1if counter > 10000:breakprint(route_old)print(E_old)参考:。